VS-CAM: Vertex Semantic Class Activation Mapping to Interpret Vision Graph Neural Network

被引:11
作者
Feng, Zhenpeng [1 ]
Cui, Xiyang [1 ]
Ji, Hongbing [1 ]
Zhu, Mingzhe [1 ]
Stankovic, Ljubisa [2 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian, Peoples R China
[2] Univ Montenegro, Fac Elect Engn, Podgorica, Montenegro
关键词
Graph neural network; Interpreting neural network; Class activation mapping;
D O I
10.1016/j.neucom.2023.02.057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional neural network (GCN) has drawn increasing attention and attained good perfor-mance in various computer vision tasks, however, there is a lack of a clear interpretation of GCN's inner mechanism. For standard convolutional neural networks (CNNs), class activation mapping (CAM) meth-ods are commonly used to visualize the connection between CNN's decision and image region by gener-ating a heatmap. Nonetheless, such heatmap usually exhibits semantic-chaos when these CAMs are applied to GCN directly. In this paper, we proposed a novel visualization method particularly applicable to GCN, Vertex Semantic Class Activation Mapping (VS-CAM). VS-CAM includes two independent pipeli-nes to produce a set of semantic-probe maps and a semantic-base map, respectively. Semantic-probe maps are used to detect the semantic information from the semantic-base map to aggregate a semantic-aware heatmap. Qualitative results show that VS-CAM can obtain heatmaps where the high-lighted regions match the objects much more precisely than CNN-based CAM. The quantitative evalua-tion further demonstrates the superiority of VS-CAM.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 39 条
[1]  
Carion Nicolas., 2020, EUR C COMPUT VIS
[2]   Grad-CAM plus plus : Generalized Gradient-based Visual Explanations for Deep Convolutional Networks [J].
Chattopadhay, Aditya ;
Sarkar, Anirban ;
Howlader, Prantik ;
Balasubramanian, Vineeth N. .
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, :839-847
[3]   UTRAD: Anomaly detection and localization with U-Transformer [J].
Chen, Liyang ;
You, Zhiyuan ;
Zhang, Nian ;
Xi, Juntong ;
Le, Xinyi .
NEURAL NETWORKS, 2022, 147 :53-62
[4]   Consolidation of unsaturated soil by vertical drain considering smear and well resistance [J].
Chen, Z. ;
Ni, P. ;
Zhu, X. ;
Chen, D. ;
Mei, G. .
GEOSYNTHETICS INTERNATIONAL, 2022, 29 (03) :270-281
[5]   GRADIENT-WEIGHTED CLASS ACTIVATION MAPPING FOR SPATIO TEMPORAL GRAPH CONVOLUTIONAL NETWORK [J].
Das, Pratyusha ;
Ortega, Antonio .
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, :4043-4047
[6]  
Desai S, 2020, IEEE WINT CONF APPL, P972, DOI [10.1109/wacv45572.2020.9093360, 10.1109/WACV45572.2020.9093360]
[7]  
Dosovitskiy A., 2021, INT C LEARNING REPRE
[8]   Fusion-GCN: Multimodal Action Recognition Using Graph Convolutional Networks [J].
Duhme, Michael ;
Memmesheimer, Raphael ;
Paulus, Dietrich .
PATTERN RECOGNITION, DAGM GCPR 2021, 2021, 13024 :265-281
[9]   SC-SM CAM: An Efficient Visual Interpretation of CNN for SAR Images Target Recognition [J].
Feng, Zhenpeng ;
Ji, Hongbing ;
Stankovic, Ljubisa ;
Fan, Jingyuan ;
Zhu, Mingzhe .
REMOTE SENSING, 2021, 13 (20)
[10]   Self-Matching CAM: A Novel Accurate Visual Explanation of CNNs for SAR Image Interpretation [J].
Feng, Zhenpeng ;
Zhu, Mingzhe ;
Stankovic, Ljubisa ;
Ji, Hongbing .
REMOTE SENSING, 2021, 13 (09)