共 50 条
Semiparametric estimation of McKean-Vlasov SDEs
被引:7
|作者:
Belomestny, Denis
[1
,3
]
Pilipauskaite, Vytaute
[2
]
Podolskij, Mark
[2
]
机构:
[1] Univ Duisburg Essen, Fac Math, Duisburg, Germany
[2] Univ Luxembourg, Dept Math, Esch sur Alzette, Luxembourg
[3] Natl Univ Higher Sch Econ, Moscow, Russia
来源:
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES
|
2023年
/
59卷
/
01期
基金:
欧洲研究理事会;
关键词:
Deconvolution;
McKean-Vlasov SDEs;
Mean field models;
Multi-agent learning;
Minimax bounds;
Semiparametric estimation;
GRANULAR MEDIA EQUATIONS;
D O I:
10.1214/22-AIHP1261
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper we study the problem of semiparametric estimation for a class of McKean-Vlasov stochastic differential equations. Our aim is to estimate the drift coefficient of a MV-SDE based on observations of the corresponding particle system. We propose a semiparametric estimation procedure and derive the rates of convergence for the resulting estimator. We further prove that the obtained rates are essentially optimal in the minimax sense.
引用
收藏
页码:79 / 96
页数:18
相关论文