Semiparametric estimation of McKean-Vlasov SDEs

被引:7
|
作者
Belomestny, Denis [1 ,3 ]
Pilipauskaite, Vytaute [2 ]
Podolskij, Mark [2 ]
机构
[1] Univ Duisburg Essen, Fac Math, Duisburg, Germany
[2] Univ Luxembourg, Dept Math, Esch sur Alzette, Luxembourg
[3] Natl Univ Higher Sch Econ, Moscow, Russia
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 01期
基金
欧洲研究理事会;
关键词
Deconvolution; McKean-Vlasov SDEs; Mean field models; Multi-agent learning; Minimax bounds; Semiparametric estimation; GRANULAR MEDIA EQUATIONS;
D O I
10.1214/22-AIHP1261
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the problem of semiparametric estimation for a class of McKean-Vlasov stochastic differential equations. Our aim is to estimate the drift coefficient of a MV-SDE based on observations of the corresponding particle system. We propose a semiparametric estimation procedure and derive the rates of convergence for the resulting estimator. We further prove that the obtained rates are essentially optimal in the minimax sense.
引用
收藏
页码:79 / 96
页数:18
相关论文
共 50 条
  • [31] Phase transitions of McKean-Vlasov processes in double-wells landscape
    Tugaut, Julian
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2014, 86 (02): : 257 - 284
  • [32] The Onsager-Machlup action functional for McKean-Vlasov stochastic differential equations
    Liu, Shanqi
    Gao, Hongjun
    Qiao, Huijie
    Lu, Nan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [33] WELL-POSEDNESS AND TAMED SCHEMES FOR MCKEAN-VLASOV EQUATIONS WITH COMMON NOISE
    Kumar, Chaman
    Neelima
    Reisinger, Christoph
    Stockinger, Wolfgang
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3283 - 3330
  • [34] Exponential Ergodicity for Singular McKean-Vlasov Stochastic Differential Equations in Weighted Variation Metric
    Hu, Shanshan
    Wang, Yue
    JOURNAL OF THEORETICAL PROBABILITY, 2025, 38 (01)
  • [35] McKean-Vlasov type stochastic differential equations arising from the random vortex method
    Qian, Zhongmin
    Yao, Yuhan
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (01):
  • [36] A trajectorial approach to relative entropy dissipation of McKean-Vlasov diffusions: Gradient flows and HWBI inequalities
    Tschiderer, Bertram
    Yeung, Lane Chun
    BERNOULLI, 2023, 29 (01) : 725 - 756
  • [37] ASYMPTOTIC BISMUT FORMULA FOR LIONS DERIVATIVE OF MCKEAN-VLASOV NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH INFINITE MEMORY
    Wang, Lixi
    Li, Junping
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025,
  • [38] WEAK CONVERGENCE OF MCKEAN-VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS WITH TWO-TIME-SCALE MARKOV SWITCHING
    Cao, Wenjie
    Wu, Fuke
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024, 14 (04): : 688 - 705
  • [39] Long-Time Behaviors of Mean-Field Interacting Particle Systems Related to McKean-Vlasov Equations
    Liu, Wei
    Wu, Liming
    Zhang, Chaoen
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 387 (01) : 179 - 214
  • [40] Rectified deep neural networks overcome the curse of dimensionality when approximating solutions of McKean-Vlasov stochastic differential equations ☆
    Neufeld, Ariel
    Nguyen, Tuan Anh
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 541 (01)