Semiparametric estimation of McKean-Vlasov SDEs

被引:7
|
作者
Belomestny, Denis [1 ,3 ]
Pilipauskaite, Vytaute [2 ]
Podolskij, Mark [2 ]
机构
[1] Univ Duisburg Essen, Fac Math, Duisburg, Germany
[2] Univ Luxembourg, Dept Math, Esch sur Alzette, Luxembourg
[3] Natl Univ Higher Sch Econ, Moscow, Russia
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 01期
基金
欧洲研究理事会;
关键词
Deconvolution; McKean-Vlasov SDEs; Mean field models; Multi-agent learning; Minimax bounds; Semiparametric estimation; GRANULAR MEDIA EQUATIONS;
D O I
10.1214/22-AIHP1261
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the problem of semiparametric estimation for a class of McKean-Vlasov stochastic differential equations. Our aim is to estimate the drift coefficient of a MV-SDE based on observations of the corresponding particle system. We propose a semiparametric estimation procedure and derive the rates of convergence for the resulting estimator. We further prove that the obtained rates are essentially optimal in the minimax sense.
引用
收藏
页码:79 / 96
页数:18
相关论文
共 50 条
  • [21] Averaging Principle for Mckean-Vlasov SDEs Driven by Multiplicative Fractional Noise With Highly Oscillatory Drift Coefficient
    Pei, Bin
    Feng, Lifang
    Han, Min
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [22] Exit problem of McKean-Vlasov diffusions in convex landscapes
    Tugaut, Julian
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 26
  • [23] Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully super-linear growth drifts in space and interaction
    Chen, Xingyuan
    dos Reis, Goncalo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 751 - 796
  • [24] Multilevel Picard approximations for McKean-Vlasov stochastic differential equations
    Hutzenthaler, Martin
    Kruse, Thomas
    Nguyen, Tuan Anh
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [25] GRADIENT FLOW STRUCTURE FOR MCKEAN-VLASOV EQUATIONS ON DISCRETE SPACES
    Erbar, Matthias
    Fathi, Max
    Laschos, Vaios
    Schlichting, Andre
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (12) : 6799 - 6833
  • [26] Parametric inference for ergodic McKean-Vlasov stochastic differential equations
    Genon-Catalot, Valentine
    Laredo, Catherine
    BERNOULLI, 2024, 30 (03) : 1971 - 1997
  • [27] A MCKEAN-VLASOV SDE AND PARTICLE SYSTEM WITH INTERACTION FROM REFLECTING BOUNDARIES
    Coghi, Michele
    Dreyer, Wolfgang
    Friz, Peter K.
    Gajewski, Paul
    Guhlke, Clemens
    Maurelli, Mario
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) : 2251 - 2294
  • [28] Probabilistic interpretation for Sobolev solutions of McKean-Vlasov partial differential equations
    Wu, Zhen
    Xu, Ruimin
    STATISTICS & PROBABILITY LETTERS, 2019, 145 : 273 - 283
  • [29] Coupled McKean-Vlasov diffusions: wellposedness, propagation of chaos and invariant measures
    Duong, Manh Hong
    Tugaut, Julian
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (06) : 900 - 943
  • [30] Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions
    Genon-Catalot, Valentine
    Laredo, Catherine
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2668 - 2693