Datasets for training and validating a deep learning-based system to detect microfossil fish teeth from slide images

被引:1
作者
Mimura, Kazuhide [1 ,2 ]
Nakamura, Kentaro [1 ,2 ,3 ]
机构
[1] Chiba Inst Technol, Ocean Resources Res Ctr Next Generat, 2-17-1 Tsudanuma, Narashino, Chiba 2750016, Japan
[2] Univ Tokyo, Frontier Res Ctr Energy & Resources, Sch Engn, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[3] Univ Tokyo, Sch Engn, Dept Syst Innovat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
基金
日本学术振兴会;
关键词
Deep learning; Object detection; Mask R-CNN; Image classification; EfficientNet-V2; Ichthyolith; Machine learning; Artificial intelligence;
D O I
10.1016/j.dib.2023.108940
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we describe the three datasets that were used to train, validate, and test deep learning models to detect mi-crofossil fish teeth. The first dataset was created for train-ing and validating a Mask R-CNN model to detect fish teeth in the images taken using the microscope. The training set contained 866 images and one annotation file; the validation set contained 92 images and one annotation file. The second dataset was created for training and validating EfficientNet-V2 models; it included 17,400 images of teeth and 15,036 images that contained only noise (particles other than teeth). The third dataset was created to evaluate the performance of a system that combines a Mask R-CNN model and an EfficientNet-V2 model; it contained 5177 images with anno-tation files for the locations of 431 teeth within the images.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:6
相关论文
共 12 条
[1]  
DHondt S., 2011, P IODP, V329, DOI [10.2204/iodp.proc.329.104.2011, DOI 10.2204/IODP.PROC.329.104.2011]
[2]  
Doyle P.S., 1985, P965
[3]   The VIA Annotation Software for Images, Audio and Video [J].
Dutta, Abhishek ;
Zisserman, Andrew .
PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, :2276-2279
[4]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[5]  
Kanazawa T., 2001, P OCEAN DRILL PROGRA, V191, P1, DOI [10.2973/odp.proc.ir.191.104.2001, DOI 10.2973/ODP.PROC.IR.191.104.2001]
[6]   Automated detection of microfossil fish teeth from slide images using combined deep learning models [J].
Mimura, Kazuhide ;
Minabe, Shugo ;
Nakamura, Kentaro ;
Yasukawa, Kazutaka ;
Ohta, Junichiro ;
Kato, Yasuhiro .
APPLIED COMPUTING AND GEOSCIENCES, 2022, 16
[7]  
Mimura Kazuhide, 2022, Mendeley Data, V1, DOI 10.17632/ZDPZ6M9GZF.1
[8]   Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous - Palaeogene mass extinction [J].
Sibert, Elizabeth ;
Friedman, Matt ;
Hull, Pincelli ;
Hunt, Gene ;
Norris, Richard .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2018, 285 (1888)
[9]   Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change [J].
Sibert, Elizabeth ;
Norris, Richard ;
Cuevas, Jose ;
Graves, Lana .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 283 (1831)
[10]  
Sibert EC, 2017, PALAEONTOL ELECTRON, V20