Energy Absorption of 3D Printed ABS and TPU Multimaterial Honeycomb Structures

被引:4
|
作者
Khatri, Nava Raj [1 ]
Egan, Paul F. [1 ]
机构
[1] Texas Tech Univ, Dept Mech Engn, Box 41021, Lubbock, TX 79409 USA
关键词
3D printing; fused deposition modeling; multimaterial printing; design; honeycomb; mechanics; MECHANICAL-PROPERTIES; POLYURETHANE HONEYCOMBS; BEHAVIOR; DESIGN; OPTIMIZATION; PERFORMANCE; STRENGTH;
D O I
10.1089/3dp.2022.0196
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Advances in multimaterial 3D printing are enabling the construction of advantageous engineering structures that benefit from material synergies. Cellular structures, such as honeycombs, provide high-energy absorption to weight ratios that could benefit from multimaterial strategies to improve the safety and performance of engineered systems. In this study, we investigate the energy absorption for honeycombs with square and hexagonal unit cells constructed from acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU). Honeycombs were fabricated and tested for out-of-plane and in-plane compression using ABS, TPU, and a combination of ABS with a central TPU band of tunable height. Out-of-plane energy absorption for square honeycombs increased from 2.2 kN center dot mm for TPU samples to 11.5 kN center dot mm for ABS samples and energy absorption of hexagonal honeycombs increased from 2.9 to 15.1 kN center dot mm as proportions of TPU/ABS were altered. In-plane loading demonstrated a sequential collapse of unit cell rows in square honeycombs with energy absorption of 0.1 to 2.6 kN center dot mm and a gradual failure of hexagonal honeycombs with energy absorption of 0.6 to 2.0 kN center dot mm. These results demonstrate how multimaterial combinations affect honeycomb compressive response by highlighting their benefits for controlled energy absorption and deformation for tunable performance in diverse engineering applications.
引用
收藏
页码:E840 / E850
页数:12
相关论文
共 50 条
  • [41] Grading Material Properties in 3D Printed Concrete Structures
    Vargas, Jose Hernandez
    Westerlind, Helena
    Silfwerbrand, Johan
    NORDIC CONCRETE RESEARCH, 2022, 66 (01): : 73 - 89
  • [42] 3D printed honeycomb spacers: Tailoring sandwich structures for enhanced electromagnetic shielding
    Hong, Yi-Sheng
    Lu, Xiao-Feng
    Zhu, Xiao-Lei
    Zhang, Kai-Lun
    Chen, Mingji
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2018, 37 (16) : 1072 - 1082
  • [43] Flexural behavior of 3D printed honeycomb sandwich structures with waste filler material
    Altan, Gurkan
    Kovan, Volkan
    MATERIALS TESTING, 2016, 58 (10) : 833 - 838
  • [44] Flexural behavior of 3D printed bio-inspired interlocking suture structures
    Wickramasinghe, Sachini
    Do, Truong
    Tran, Phuong
    MATERIALS SCIENCE IN ADDITIVE MANUFACTURING, 2022, 1 (02):
  • [45] Experimental analysis of energy absorption characteristics in composite sandwich structures with 3D-printed honeycomb core under quasi-static compression
    Mirzaei, Jaber
    Zarei, Hamid Reza
    Khodamoradi, Mohammad Kazem
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2025,
  • [46] Compression performance of 3D-printed thermoplastic auxetic structures
    He, Pan
    Wang, Siwen
    Zhang, Miaomiao
    Sang, Lin
    Tong, Liyong
    Hou, Wenbin
    THIN-WALLED STRUCTURES, 2024, 197
  • [47] The 3D Printing of Novel Honeycomb-Hollow Pyramid Sandwich Structures for Microwave and Mechanical Energy Absorption
    Li, Quan
    Wang, Zhicheng
    Wang, Xueyang
    Wang, Yang
    Yang, Jian
    POLYMERS, 2023, 15 (24)
  • [48] Charpy impact energy absorption of 3D printed continuous Kevlar reinforced composites
    Hetrick, Dakota R.
    Sanei, Seyed Hamid Reza
    Ashour, Omar
    Bakis, Charles E.
    JOURNAL OF COMPOSITE MATERIALS, 2021, 55 (12) : 1705 - 1713
  • [49] Impact energy absorption of functionally graded chiral honeycomb structures
    Qi, Dexing
    Lu, Qiuyu
    He, ChunWang
    Li, Ying
    Wu, Wenwang
    Xiao, Dengbao
    EXTREME MECHANICS LETTERS, 2019, 32
  • [50] Effect of Ultrasonic Vibration on Interlayer Adhesion in Fused Filament Fabrication 3D Printed ABS
    Tofangchi, Alireza
    Han, Pu
    Izquierdo, Julio
    Iyengar, Adithya
    Hsu, Keng
    POLYMERS, 2019, 11 (02)