Low-content SnO2 nanodots on N-doped graphene: lattice-confinement preparation and high-performance lithium/sodium storage

被引:7
作者
Liu, Shuaipeng [1 ]
Dong, Yan [1 ]
Deng, Chengwei [1 ]
Chen, Feijiang [1 ]
Su, Yu [1 ]
Li, Sheng-Yi [2 ]
Xu, Sailong [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[2] Beijing Inst Smart Energy, Beijing 102209, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
ION BATTERIES; ANODE MATERIALS; ELECTRODE MATERIALS; NANOCOMPOSITES; EFFICIENT; CARBON; PSEUDOCAPACITORS; CONVERSION; COMPOSITE; AEROGEL;
D O I
10.1039/d2dt03616a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Rational construction of nanosized anode nanomaterials is crucial to enhance the electrochemical performance of lithium-/sodium-ion batteries (LIBs/SIBs). Various anode nanoparticles are created mainly via templating surface confinement, or encapsulation within precursors (such as metal-organic frameworks). Herein, low-content SnO2 nanodots on N-doped reduced graphene oxide (SnO2@N-rGO) were prepared as anode nanomaterials for LIBs and SIBs, via a distinctive lattice confinement of a CoAlSn-layered double hydroxide (CoAlSn-LDH) precursor. The SnO2@N-rGO composite exhibits the advantagous features of low-content (17.9 wt%) and uniform SnO2 nanodots (3.0 +/- 0.5 nm) resulting from the lattice confinement of the Co and Al species to the surrounded Sn within the same crystalline layer, and high-content conductive rGO. The SnO2@N-rGO composite delivers a highly reversible capacity of 1146.2 mA h g(-1) after 100 cycles at 0.1 A g(-1) for LIBs, and 387 mA h g(-1) after 100 cycles at 0.1 A g(-1) for SIBs, outperforming N-rGO. Furthermore, the dominant capacitive contribution and the rapid electronic and ionic transfer, as well as small volume variation, all give rise to the enhancement. Precursor-based lattice confinement could thus be an effective strategy for designing and preparing uniform nanodots as anode nanomaterials for electrochemical energy storage.
引用
收藏
页码:1642 / 1649
页数:8
相关论文
共 61 条
[11]   Controlled SnO2 Crystallinity Effectively Dominating Sodium Storage Performance [J].
Fan, Linlin ;
Li, Xifei ;
Yan, Bo ;
Feng, Jianmin ;
Xiong, Dongbin ;
Li, Dejun ;
Gu, Lin ;
Wen, Yuren ;
Lawes, Stephen ;
Sun, Xueliang .
ADVANCED ENERGY MATERIALS, 2016, 6 (10)
[12]   In situ synthesis of SnO2-Fe2O3@polyaniline and their conversion to SnO2-Fe2O3@C composite as fully reversible anode material for lithium-ion batteries [J].
Guo, Jinxue ;
Chen, Lei ;
Wang, Guangjin ;
Zhang, Xiao ;
Li, Fenfen .
JOURNAL OF POWER SOURCES, 2014, 246 :862-867
[13]   Fabrication of multi-layer CoSnO3@carbon-caged NiCo2O4 nanobox for enhanced lithium storage performance [J].
Huang, Shoushuang ;
Xin, Peijun ;
Wu, Chenghao ;
Fei, Siming ;
Zhang, Qian ;
Jiang, Yong ;
Chen, Zhiwen ;
Selegard, Linnea ;
Uvdal, Kajsa ;
Hu, Zhangjun .
CHEMICAL ENGINEERING JOURNAL, 2021, 410
[14]   3D Porous Carbon Encapsulated SnO2 Nanocomposite for Ultrastable Sodium Ion Batteries [J].
Huang, Zhaodong ;
Hou, Hongshuai ;
Zou, Guoqiang ;
Chen, Jun ;
Zhang, Yan ;
Liao, Hanxiao ;
Li, Simin ;
Ji, Xiaobo .
ELECTROCHIMICA ACTA, 2016, 214 :156-164
[15]   Graphitic N-CMK3 pores filled with SnO2 nanoparticles as an ultrastable anode for rechargeable Li-ion batteries [J].
Le, Hang T. T. ;
Duc Tung Ngo ;
Xuan-Manh Pham ;
Thi-Yen Nguyen ;
Trung-Dung Dang ;
Park, Chan-Jin .
JOURNAL OF POWER SOURCES, 2019, 440
[16]   From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing [J].
Li, Jianlin ;
Fleetwood, James ;
Hawley, W. Blake ;
Kays, William .
CHEMICAL REVIEWS, 2022, 122 (01) :903-956
[17]   K-Ion Storage Enhancement in Sb2O3/Reduced Graphene Oxide Using Ether-Based Electrolyte [J].
Li, Jinliang ;
Zhuang, Ning ;
Xie, Junpeng ;
Li, Xiaodan ;
Zhuo, Wenchen ;
Wang, Hao ;
Na, Jong Beom ;
Li, Xibo ;
Yamauchi, Yusuke ;
Mai, Wenjie .
ADVANCED ENERGY MATERIALS, 2020, 10 (05)
[18]   Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries [J].
Li, Meixia ;
Yin, Ya-Xia ;
Li, Congju ;
Zhang, Fazhi ;
Wan, Li-Jun ;
Xu, Sailong ;
Evans, David G. .
CHEMICAL COMMUNICATIONS, 2012, 48 (03) :410-412
[19]   Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries [J].
Li, Qi ;
Liu, Xiangsi ;
Tao, Ying ;
Huang, Jianxing ;
Zhang, Jun ;
Yang, Chunpeng ;
Zhang, Yibo ;
Zhang, Siwei ;
Jia, Yiran ;
Lin, Qiaowei ;
Xiang, Yuxuan ;
Cheng, Jun ;
Lv, Wei ;
Kang, Feiyu ;
Yang, Yong ;
Yang, Quan-Hong .
NATIONAL SCIENCE REVIEW, 2022, 9 (08)
[20]   Growth of SnO2 Nanoflowers on N-doped Carbon Nanofibers as Anode for Li- and Na-ion Batteries [J].
Liang, Jiaojiao ;
Yuan, Chaochun ;
Li, Huanhuan ;
Fan, Kai ;
Wei, Zengxi ;
Sun, Hanqi ;
Ma, Jianmin .
NANO-MICRO LETTERS, 2018, 10 (02)