A one-dimensional convolutional neural network based deep learning for high accuracy classification of transformation stages in esophageal squamous cell carcinoma tissue using micro-FTIR

被引:16
作者
Yang, Haijun [1 ]
Li, Xianchang [2 ,3 ]
Zhang, Shiding [3 ]
Li, Yuan [3 ]
Zhu, Zunwei [3 ]
Shen, Jingwei [1 ]
Dai, Ningtao [1 ]
Zhou, Fuyou [1 ]
机构
[1] Henan Univ Sci & Technol, Anyang Tumor Hosp, Affiliated Anyang Tumor Hosp, Henan Key Med Lab Precise Prevent & Treatment Esop, Anyang 455001, Henan, Peoples R China
[2] Huzhou Coll, Huzhou 313000, Zhejiang, Peoples R China
[3] Anyang Inst Technol, Henan Joint Int Res Lab Nanocomposite Sensing Mat, Anyang 455000, Henan, Peoples R China
基金
中国博士后科学基金;
关键词
Micro-FTIR; Deep learning; 1D-CNN; Esophageal squamous cell carcinoma; RAMAN-SPECTROSCOPY; IDENTIFICATION; SPECTRA;
D O I
10.1016/j.saa.2022.122210
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Among the most frequently diagnosed cancers in developing countries, esophageal squamous cell carcinoma (ESCC) ranks among the top six causes of death. It would be beneficial if a rapid, accurate, and automatic ESCC diagnostic method could be developed to reduce the workload of pathologists and improve the effectiveness of cancer treatments. Using micro-FTIR spectroscopy, this study classified the transformation stages of ESCC tissues. Based on 6,352 raw micro-FTIR spectra, a one-dimensional convolutional neural network (1D-CNN) model was constructed to classify-five stages. Based on the established model, more than 93% accuracy was achieved at each stage, and the accuracy of identifying proliferation, low grade neoplasia, and ESCC cancer groups was achieved 99% for the test dataset. In this proof-of-concept study, the developed method can be applied to other diseases in order to promote the use of FTIR spectroscopy in cancer pathology.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Using Fourier transform IR spectroscopy to analyze biological materials [J].
Baker, Matthew J. ;
Trevisan, Julio ;
Bassan, Paul ;
Bhargava, Rohit ;
Butler, Holly J. ;
Dorling, Konrad M. ;
Fielden, Peter R. ;
Fogarty, Simon W. ;
Fullwood, Nigel J. ;
Heys, Kelly A. ;
Hughes, Caryn ;
Lasch, Peter ;
Martin-Hirsch, Pierre L. ;
Obinaju, Blessing ;
Sockalingum, Ganesh D. ;
Sule-Suso, Josep ;
Strong, Rebecca J. ;
Walsh, Michael J. ;
Wood, Bayden R. ;
Gardner, Peter ;
Martin, Francis L. .
NATURE PROTOCOLS, 2014, 9 (08) :1771-1791
[2]   Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples [J].
Bassan, Paul ;
Kohler, Achim ;
Martens, Harald ;
Lee, Joe ;
Byrne, Hugh J. ;
Dumas, Paul ;
Gazi, Ehsan ;
Brown, Michael ;
Clarke, Noel ;
Gardner, Peter .
ANALYST, 2010, 135 (02) :268-277
[3]   Deep learning for FTIR histology: leveraging spatial and spectral features with convolutional neural networks [J].
Berisha, Sebastian ;
Lotfollahi, Mahsa ;
Jahanipour, Jahandar ;
Gurcan, Ilker ;
Walsh, Michael ;
Bhargava, Rohit ;
Hien Van Nguyen ;
Mayerich, David .
ANALYST, 2019, 144 (05) :1642-1653
[4]   Deep Learning for Reconstructing Low-Quality FTIR and Raman Spectra-A Case Study in Microplastic Analyses [J].
Brandt, Josef ;
Mattsson, Karin ;
Hassellov, Martin .
ANALYTICAL CHEMISTRY, 2021, 93 (49) :16360-16368
[5]   A biosensing method for the direct serological detection of liver diseases by integrating a SERS-based sensor and a CNN classifier [J].
Cheng, Ningtao ;
Chen, Dajing ;
Lou, Bin ;
Fu, Jing ;
Wang, Hongyang .
BIOSENSORS & BIOELECTRONICS, 2021, 186 (186)
[6]   Fourier Transform Infrared (FTIR) Spectroscopy to Analyse Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices [J].
Fadlelmoula, Ahmed ;
Pinho, Diana ;
Carvalho, Vitor Hugo ;
Catarino, Susana O. ;
Minas, Graca .
MICROMACHINES, 2022, 13 (02)
[7]   Deep learning for 'artefact' removal in infrared spectroscopy [J].
Guo, Shuxia ;
Mayerhoefer, Thomas ;
Pahlow, Susanne ;
Huebner, Uwe ;
Popp, Juergen ;
Bocklitz, Thomas .
ANALYST, 2020, 145 (15) :5213-5220
[8]  
Mozaffari MH, 2020, Arxiv, DOI [arXiv:2006.10575, 10.48550/arXiv(2020)2006.10575]
[9]   Deep Learning for Biospectroscopy and Biospectral Imaging: State- of-the-Art and Perspectives [J].
He, Hao ;
Yan, Sen ;
Lyu, Danya ;
Xu, Mengxi ;
Ye, Ruiqian ;
Zheng, Peng ;
Lu, Xinyu ;
Wang, Lei ;
Ren, Bin .
ANALYTICAL CHEMISTRY, 2021, 93 (08) :3653-3665
[10]   Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning [J].
Ho, Chi-Sing ;
Jean, Neal ;
Hogan, Catherine A. ;
Blackmon, Lena ;
Jeffrey, Stefanie S. ;
Holodniy, Mark ;
Banaei, Niaz ;
Saleh, Amr A. E. ;
Ermon, Stefano ;
Dionne, Jennifer .
NATURE COMMUNICATIONS, 2019, 10 (1)