Performance prediction of a reverse osmosis unit using an optimized Long Short-term Memory model by hummingbird optimizer

被引:47
|
作者
Essa, Fadl A. [1 ]
Abd Elaziz, Mohamed [2 ,3 ,4 ,5 ]
Al-Betar, Mohammed Azmi [4 ]
Elsheikh, Ammar H. [6 ]
机构
[1] Kafrelsheikh Univ, Fac Engn, Mech Engn Dept, Kafrelsheikh 33516, Egypt
[2] Zagazig Univ, Fac Sci, Dept Math, Zagazig 44519, Egypt
[3] Galala Univ, Fac Comp Sci & Engn, Suze 435611, Egypt
[4] Ajman Univ, Artificial Intelligence Res Ctr AIRC, Ajman, U Arab Emirates
[5] Lebanese Amer Univ, Dept Elect & Comp Engn, Byblos, Lebanon
[6] Tanta Univ, Dept Prod Engn & Mech Design, Tanta 31527, Egypt
关键词
Reverse osmosis; Energy recovery system; Long Short-term Memory; Artificial hummingbirds algorithm; ARTIFICIAL NEURAL-NETWORK; RO DESALINATION PROCESS; ENERGY-CONSUMPTION; SOLAR-ENERGY; POTABLE WATER; SYSTEM; OPERATION;
D O I
10.1016/j.psep.2022.10.071
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The accessibility to freshwater suitable for human use is a modern problem in many countries of the world. One of the well-known methods to overcome this problem is the reverse osmosis (RO). The performance of a reverse osmosis unit integrated to a recovery energy system was experimentally investigated under various operating system pressures (10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 bar) and recovery ratios (10%, 20%, 30%, 40%, and 50%). Moreover, a hybrid machine learning model composed of Long Short-term Memory (LSTM) neural network optimized by artificial hummingbirds' algorithm (AHA) was developed to predict permeate flow and power saving of the investigated RO unit. The inputs of the models, in case of power saving, were recovery ratio and system pressure; while system pressure was the input of the models in case of permeate flow. AHA was employed to optimize the performance of pure LSTM via determining the optimal values of the model parameters. A considerable enhancement in prediction accuracy of the optimized model was observed compared with pure model. The coefficient of determination during testing phase of power saving prediction was 0.997 and 0.981 for LSTM-AHA and LSTM, respectively. While it was 0.992 and 0.97 for LSTM-AHA and LSTM, respectively, in case of permeate flow prediction. Furthermore, the saving in consumed power of the RO unit was declined with increasing the recovery ratio. Therefore, the best saving in consumed power was obtained for the recovery ratio of 10%, where it reported more than 85%.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 50 条
  • [41] Long short-term memory neural network for glucose prediction
    Jaime Carrillo-Moreno
    Carmen Pérez-Gandía
    Rafael Sendra-Arranz
    Gema García-Sáez
    M. Elena Hernando
    Álvaro Gutiérrez
    Neural Computing and Applications, 2021, 33 : 4191 - 4203
  • [42] A model for vessel trajectory prediction based on long short-term memory neural network
    Tang H.
    Yin Y.
    Shen H.
    Journal of Marine Engineering and Technology, 2022, 21 (03) : 136 - 145
  • [43] Credit Risk Assessment Based on Long Short-Term Memory Model
    Zhang, Yishen
    Wang, Dong
    Chen, Yuehui
    Shang, Huijie
    Tian, Qi
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 700 - 712
  • [44] Long short-term memory neural network for glucose prediction
    Carrillo-Moreno, Jaime
    Perez-Gandia, Carmen
    Sendra-Arranz, Rafael
    Garcia-Saez, Gema
    Hernando, M. Elena
    Gutierrez, Alvaro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09) : 4191 - 4203
  • [45] Air quality prediction for Chengdu based on long short-term memory neural network with improved jellyfish search optimizer
    Qixian Song
    Jing Zou
    Min Xu
    Mingyang Xi
    Zhaorong Zhou
    Environmental Science and Pollution Research, 2023, 30 : 64416 - 64442
  • [46] Short-term power prediction for renewable energy using hybrid graph convolutional network and long short-term memory approach
    Liao, Wenlong
    -Jensen, Birgitte Bak
    Pillai, Jayakrishnan Radhakrishna
    Yang, Zhe
    Liu, Kuangpu
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 211
  • [47] Air quality prediction for Chengdu based on long short-term memory neural network with improved jellyfish search optimizer
    Song, Qixian
    Zou, Jing
    Xu, Min
    Xi, Mingyang
    Zhou, Zhaorong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (23) : 64416 - 64442
  • [48] Short-Term Traffic Prediction Using Deep Learning Long Short-Term Memory: Taxonomy, Applications, Challenges, and Future Trends
    Khan, Anwar
    Fouda, Mostafa M.
    Do, Dinh-Thuan
    Almaleh, Abdulaziz
    Rahman, Atiq Ur
    IEEE ACCESS, 2023, 11 : 94371 - 94391
  • [49] A Hybrid Long Short-Term Memory and Kalman Filter Model for Train Trajectory Prediction
    Ahmad, Ehsan
    He, Yijuan
    Luo, Zhengwei
    Lv, Jidong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7125 - 7139
  • [50] Surface water temperature prediction in large-deep reservoirs using a long short-term memory model
    Wang, Longfan
    Xu, Bo
    Zhang, Chi
    Fu, Guangtao
    Chen, Xiaoxian
    Zheng, Yi
    Zhang, Jingjie
    ECOLOGICAL INDICATORS, 2022, 134