Assembly of polyelectrolyte star block copolymers at the oil-water interface

被引:8
|
作者
Carrillo, Jan-Michael Y. [1 ]
Chen, Zhan [2 ]
Premadasa, Uvinduni I. [3 ]
Steinmetz, Christian [2 ]
Coughlin, E. Bryan [2 ]
Doughty, Benjamin [3 ]
Russell, Thomas P. [2 ,4 ]
Sumpter, Bobby G. [1 ]
机构
[1] Ctr Nanophase Mat Sci, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Univ Massachusetts, Conte Ctr Polymer Res, Polymer Sci & Engn Dept, Amherst, MA 01003 USA
[3] Chem Sci Div, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[4] Mat Sci Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
关键词
MOLECULAR-DYNAMICS SIMULATIONS; SURFACE-TENSION; EQUILIBRIUM; ADSORPTION;
D O I
10.1039/d2nr05113c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To understand and resolve adsorption, reconfiguration, and equilibrium conformations of charged star copolymers, we carried out an integrated experimental and coarse-grained molecular dynamics simulation study of the assembly process at the oil-water interface. This is important to guide development of novel surfactants or amphiphiles for chemical transformations and separations. The star block copolymer consisted of arms that are comprised of hydrophilic-hydrophobic block copolymers that are covalently tethered via the hydrophobic blocks to one point. The hydrophobic core represents polystyrene (PS) chains, while the hydrophilic corona represents quaternized poly(2-vinylpyridine) (P2VP) chains. The P2VP is modeled to become protonated when in contact with an acidic aqueous phase, thereby massively increasing the hydrophilicity of this block, and changing the nature of the star at the oil-water interface. This results in a configurational change whereby the chains comprising the hydrophilic corona are significantly stretched into the aqueous phase, while the hydrophobic core remains solubilized in the oil phase. In the simulations, we followed the kinetics of the anchoring and assembly of the star block copolymer at the interface, monitoring the lateral assembly, and the subsequent reconfiguration of the star via changes in the interfacial tension that varies as the degree-of-protonation increases. At low fractions of protonation, the arm cannot fully partition into the aqueous side of the interface and instead interacts with other arms in the oil phase forming a network near the interface. These insights were used to interpret the non-monotonic dependence of pH with the asymptotic interfacial tension from pendant drop tensiometry experiments and spectral signatures of aromatic stretches seen in vibrational sum frequency generation (SFG) spectroscopy. We describe the relationship of interfacial tension to the star assembly via the Frumkin isotherm, which phenomenologically describes anti-cooperativity in adsorbing stars to the interface due to crowding. Although our model explicitly considers long-range electrostatics, the contribution of electrostatics to interfacial tension is small and brought about by strong counterion condensation at the interface. These results provide key insights into resolving the adsorption, reconfiguration, and equilibrium conformations of charged star block copolymers as surfactants.
引用
收藏
页码:1042 / 1052
页数:12
相关论文
共 50 条
  • [31] Visualization of fluorescently labeled lipase distribution characteristics at the oil-water interface
    Du, Xian
    Zhang, Chunxiao
    Peng, Biyu
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2025, : 981 - 992
  • [32] Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil-Water Interface
    Toor, Anju
    Forth, Joe
    de Araujo, Simone Bochner
    Merola, Maria Consiglia
    Jiang, Yufeng
    Liu, Xubo
    Chai, Yu
    Hou, Honghao
    Ashby, Paul D.
    Fuller, Gerald G.
    Russell, Thomas P.
    LANGMUIR, 2019, 35 (41) : 13340 - 13350
  • [33] Effects of proteins on emulsion stability: The role of proteins at the oil-water interface
    Zhang, Mi
    Fan, Liuping
    Liu, Yuanfa
    Huang, Shengquan
    Li, Jinwei
    FOOD CHEMISTRY, 2022, 397
  • [34] Single Molecule Observations of Multiple Protein Populations at the Oil-Water Interface
    Walder, Robert
    Schwartz, Daniel K.
    LANGMUIR, 2010, 26 (16) : 13364 - 13367
  • [35] Nonlinear dilatational rheology of different protein aggregates at the oil-water interface
    Li, Jing
    Zhang, Bao
    Ye, Jing
    Sun, Fusheng
    Liu, Yantao
    Yang, Nan
    Nishinari, Katsuyoshi
    SOFT MATTER, 2022, 18 (12) : 2383 - 2393
  • [36] Denaturation of soy proteins in solution and at the oil-water interface: A fluorescence study
    Miriani, M.
    Keerati-u-rai, M.
    Corredig, M.
    Iametti, S.
    Bonomi, F.
    FOOD HYDROCOLLOIDS, 2011, 25 (04) : 620 - 626
  • [37] Asphaltenes and hydrolysed polyacrylamide at the oil-water interface behaviour and emulsion stability
    Li, Yanshuo
    Liu, Wei
    Hu, Xin
    Lu, Fengjie
    Guo, Shichong
    Li, Yiming
    Lu, Jinren
    Bao, Mutai
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 352
  • [38] Molecular Dynamics Simulation of the Effects of Anionic-Nonionic Surfactants on Interfacial Properties of the Oil-Water Interface
    Chen, Zhaojun
    Zhu, Yangwen
    Zhong, Jinpan
    Liu, Ping
    Wang, Yougi
    Yu, Hongmin
    Zhang, Li
    Ma, Luxuan
    Sun, Deshuai
    Xia, Kai
    ACS OMEGA, 2025, 10 (11): : 11325 - 11333
  • [39] The profile of an oil-water interface in a spin-up rotating cylindrical vessel
    Yan, Zixiang
    Sun, Lu
    Xiao, Jinghua
    Lan, Yueheng
    AMERICAN JOURNAL OF PHYSICS, 2017, 85 (04) : 271 - 276
  • [40] Nuclear magnetic resonance study of monoclonal antibodies near an oil-water interface
    Bhagu, Jamini
    Anderson, Lissa C.
    Grant, Samuel C.
    Mohammadigoushki, Hadi
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2025, 114 (04)