Ulam-Hyers stability of pantograph fractional stochastic differential equations

被引:16
作者
Mchiri, Lassaad [1 ]
Ben Makhlouf, Abdellatif [2 ]
Rguigui, Hafedh [3 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Sfax, Tunisia
[2] Jouf Univ, Coll Sci, Dept Math, Aljouf, Saudi Arabia
[3] Umm Al Qura Univ, Al Qunfudhah Univ Coll, Dept Math, Al Qunfudhah, Saudi Arabia
关键词
Caputo derivative; Ulam stability; POLYNOMIAL STABILITY; EXISTENCE; DYNAMICS;
D O I
10.1002/mma.8745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence and uniqueness theorem (EUT) of Pantograph fractional stochastic differential equations (PFSDE) using the Banach fixed point theorem (BFPT). We show the Ulam-Hyers stability (UHS) of PFSDE by the generalized Gronwall inequalities (GGI). We illustrate our results by two examples.
引用
收藏
页码:4134 / 4144
页数:11
相关论文
共 37 条
[1]   A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability [J].
Abbas, Said ;
Benchohra, Mouffak ;
Lazreg, Jamal-Eddine ;
Zhou, Yong .
CHAOS SOLITONS & FRACTALS, 2017, 102 :47-71
[2]   A Generalized Definition of the Fractional Derivative with Applications [J].
Abu-Shady, M. ;
Kaabar, Mohammed K. A. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
[3]   Dynamics of the worm transmission in wireless sensor network in the framework of fractional derivatives [J].
Achar, Sindhu J. ;
Baishya, Chandrali ;
Kaabar, Mohammed K. A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (08) :4278-4294
[4]  
Ahmad B., 2017, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities
[5]   Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations [J].
Ahmadova, Arzu ;
Mahmudov, Nazim, I .
STATISTICS & PROBABILITY LETTERS, 2021, 168
[6]   Caputo-Hadamard Fractional Derivatives of Variable Order [J].
Almeida, Ricardo .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (01) :1-19
[7]   Existence and Stability Results for Random Impulsive Fractional Pantograph Equations [J].
Anguraj, A. ;
Vinodkumar, A. ;
Malar, K. .
FILOMAT, 2016, 30 (14) :3839-3854
[8]   On the admissibility of unboundedness properties of forced deterministic and stochastic sublinear Volterra summation equations [J].
Appleby, John A. D. ;
Patterson, Denis D. .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (63)
[9]  
Baker C. T. H., 2000, Electronic Transactions on Numerical Analysis, V11
[10]  
Baleanu D., 2011, Fractional Dynamics and Control, DOI [10.1007/978-1-4614-0457-6, DOI 10.1007/978-1-4614-0457-6]