On the bounds of eigenvalues of matrix polynomials

被引:0
作者
Shah, W. M. [1 ]
Singh, Sooraj [1 ]
机构
[1] Cent Univ Kashmir, Ganderbal, Jammu & Kashmir, India
关键词
Matrix polynomial; Polynomial eigenvalue problem; Bounds;
D O I
10.1007/s41478-022-00481-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M(z) = A(m)z(m) + A(m-1)z(m-1) + ... + A(1)z + A(0) be a matrix polynomial, whose coefficients A(k) is an element of C-nxn, for all k = 0, 1,...,m, satisfying the following dominant property parallel to A(m)parallel to > parallel to A(k)parallel to, for all k = 0,1,...,m - 1, then it is known that all eigenvalues lambda of M(z) locate in the open disk vertical bar lambda vertical bar < 1 + parallel to A(m)parallel to parallel to A(m)(-1)parallel to. In this paper, among other things, we prove some refinements of this result, which in particular provide refinements of some results concerning the distribution of zeros of polynomials in the complex plane.
引用
收藏
页码:821 / 829
页数:9
相关论文
共 6 条
[1]  
Aziz A, 2006, MATH INEQUAL APPL, V9, P107
[2]   ON THE LOCATION OF EIGENVALUES OF MATRIX POLYNOMIALS [J].
Cong-Trinh Le ;
Thi-Hoa-Binh Du ;
Tran-Duc Nguyen .
OPERATORS AND MATRICES, 2019, 13 (04) :937-954
[3]  
Dehmer M., 2006, J INEQUAL PURE APPL, V7
[4]  
Marden M., 1966, GEOMETRY POLYNOMIALS
[5]   On the numerical solution of (λ2A+λB+C) x=b and application to structural dynamics [J].
Simoncini, V ;
Perotti, F .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06) :1875-1897
[6]   Structured pseudospectra for polynomial eigenvalue problems, with applications [J].
Tisseur, F ;
Higham, NJ .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :187-208