The elemental pegging effect in locally ordered nanocrystallites of high-entropy oxide enables superior lithium storage

被引:11
作者
Leng, Huitao [1 ,2 ]
Zhang, Panpan [1 ,2 ]
Wu, Jiansheng [1 ,2 ]
Xu, Taiding [1 ,2 ]
Deng, Hong [1 ,2 ]
Yang, Pan [1 ,2 ,3 ]
Wang, Shouyue [1 ,2 ]
Qiu, Jingxia [1 ,2 ]
Wu, Zhenzhen [3 ]
Li, Sheng [1 ,2 ]
机构
[1] Nanjing Tech Univ NanjingTech, Sch Phys & Math Sci, Key Lab Flexible Elect KLOFE, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ NanjingTech, Inst Adv Mat IAM, Nanjing 211816, Peoples R China
[3] Griffith Univ, Ctr Clean Environm & Energy, Sch Environm & Sci, Gold Coast 4222, Australia
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE ANODE; RECHARGEABLE LITHIUM; ENERGY-STORAGE; SPINEL; WATER;
D O I
10.1039/d3nr04006b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-entropy oxides (HEOs) can be well suited for lithium-ion battery anodes because of their multi-principal synergistic effect and good stability. The appropriate selection and combination of elements play a crucial role in designing conversion-type anode materials with outstanding electrochemical performance. In this study, we have successfully built a single-phase spinel-structured HEO material of (Mn0.23Fe0.23Co0.22Cr0.19Zn0.13)3O4 (HEO-MFCCZ). When the HEO-MFCCZ materials transform into a coexisting state of amorphous and nanocrystalline structures during the cycling process, the inert Zn element can initiate a pegging effect, causing enhanced stability. The transition also introduces many defect sites, effectively reducing the potential barrier for ion transport and accelerating ion transport. The increased electronic and ionic conductivities and pseudocapacitive contribution significantly enhance the rate performance. As a result, a unique and practical approach is provided for developing anode materials for lithium-ion batteries. In this work, a high entropy oxide, (Mn0.23Fe0.23Co0.22Cr0.19Zn0.13)3O4, is prepared as anode material for lithium-ion batteries. It shows excellent rate and cycling stability due to the Zn pegging effect in the locally ordered nanocrystallites.
引用
收藏
页码:19139 / 19147
页数:9
相关论文
共 44 条
[1]   Recent progress of high-entropy materials for energy storage and conversion [J].
Amiri, Azadeh ;
Shahbazian-Yassar, Reza .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (02) :782-823
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]   In operando synchrotron X-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications [J].
Chen, Tsung-Yi ;
Wang, Syuan-Yu ;
Kuo, Chun-Han ;
Huang, Shao-Chu ;
Lin, Ming-Hsien ;
Li, Chih-Heng ;
Chen, Hsin-Yi Tiffany ;
Wang, Chun-Chieh ;
Liao, Yen-Fa ;
Lin, Chia-Ching ;
Chang, Yu-Ming ;
Yeh, Jien-Wei ;
Lin, Su-Jien ;
Chen, Tsan-Yao ;
Chen, Han-Yi .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (41) :21756-21770
[4]   Opportunities for High-Entropy Materials in Rechargeable Batteries [J].
Chen, Yuwei ;
Fu, Haoyu ;
Huang, Yangyang ;
Huang, Liqiang ;
Zheng, Xueying ;
Dai, Yiming ;
Huang, Yunhui ;
Luo, Wei .
ACS MATERIALS LETTERS, 2021, 3 (02) :160-170
[5]   Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure [J].
Dabrowa, Juliusz ;
Stygar, Miroslaw ;
Mikula, Andrzej ;
Knapik, Arkadiusz ;
Mroczka, Krzysztof ;
Tejchman, Waldemar ;
Danielewski, Marek ;
Martin, Manfred .
MATERIALS LETTERS, 2018, 216 :32-36
[6]   Automotive Li-Ion Batteries: Current Status and Future Perspectives [J].
Ding, Yuanli ;
Cano, Zachary P. ;
Yu, Aiping ;
Lu, Jun ;
Chen, Zhongwei .
ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) :1-28
[7]   Ultralow-concentration electrolyte boosting K0.486V2O5 for high-performance proton storage [J].
Dong, Shengyang ;
Lv, Nan ;
Ren, Ruiqi ;
Wu, Yulin ;
Liu, Pin ;
Zhu, Guoyin ;
Wang, Wenjun ;
Zhang, Yizhou ;
Dong, Xiaochen .
SCIENCE CHINA-MATERIALS, 2022, 65 (11) :3069-3076
[8]   New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries [J].
Duan, ChanQin ;
Tian, Kanghui ;
Li, Xinglong ;
Wang, Dan ;
Sun, Hongyu ;
Zheng, Runguo ;
Wang, Zhiyuan ;
Liu, Yanguo .
CERAMICS INTERNATIONAL, 2021, 47 (22) :32025-32032
[9]  
Fang S., 2022, Transit Met Oxides Electrochem Energy Storage, P55, DOI [DOI 10.1002/9783527817252.CH4, 10.1002/9783527817252.ch4]
[10]  
Ge MZ, 2021, ADV MATER, V33, DOI [10.1002/adma.202170124, 10.1002/adma.202004577]