Bulk properties of the chiral metallic triangular antiferromagnets Ni1/3NbS2 and Ni1/3TaS2

被引:8
作者
An, Yeochan [1 ,2 ]
Park, Pyeongjae [1 ,2 ]
Kim, Chaebin [1 ,2 ]
Zhang, Kaixuan [1 ,2 ]
Kim, Hyeoncheol [1 ,2 ]
Avdeev, Maxim [3 ,4 ]
Kim, Jaewon [5 ]
Han, Myung-Joon [5 ]
Noh, Han-Jin [6 ]
Seong, Seungho [7 ]
Kang, J. -s. [7 ]
Kim, Hyeong-Do [8 ]
Park, Je-Geun [1 ,2 ]
机构
[1] Seoul Natl Univ, Ctr Quantum Mat, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[3] Australian Nucl Sci & Technol Org, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia
[4] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[5] Korea Adv Inst Sci & Technol, Dept Phys, Taejon, South Korea
[6] Chonnam Natl Univ, Dept Phys Educ, Gwangju 61186, South Korea
[7] Catholic Univ Korea, Dept Phys, Bucheon 14662, South Korea
[8] PAL XFEL, Pohang Accelerator Lab, Pohang 37673, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
TOTAL-ENERGY CALCULATIONS; TANTALUM DICHALCOGENIDES; NIOBIUM; FERROMAGNETISM; ANISOTROPY;
D O I
10.1103/PhysRevB.108.054418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
T M1/3MS2 (TM = 3d transition metal, M = Nb, Ta) has recently attracted increasing attention due to its wide variety of fascinating magnetic structures and the chiral arrangement of intercalated TM atoms. We investigated the bulk properties of Ni1/3NbS2 and Ni1/3TaS2 using magnetization, transport, heat capacity, powder neutron diffraction, and x-ray absorption spectroscopy. Ni1/3NbS2 undergoes a phase transition at 84 K, developing an antiferromagnetic helical order with a very long period along the c axis (33c). On the other hand, a simple A-type spin configuration was observed for Ni1/3TaS2 below 158 K, where the spins are aligned to the c axis. These magnetic structures, combined with lattice chirality and metallicity, can lead to various intriguing transport properties, making Ni1/3NbS2 and Ni1/3TaS2 promising material candidates for future studies on antiferromagnetic spintronics.
引用
收藏
页数:11
相关论文
共 53 条
[1]   Extended exchange interactions stabilize long-period magnetic structures in Cr1/3NbS2 [J].
Aczel, A. A. ;
DeBeer-Schmitt, L. M. ;
Williams, T. J. ;
McGuire, M. A. ;
Ghimire, N. J. ;
Li, L. ;
Mandrus, D. .
APPLIED PHYSICS LETTERS, 2018, 113 (03)
[2]   ECHIDNA: a decade of high-resolution neutron powder diffraction at OPAL [J].
Avdeev, Maxim ;
Hester, James R. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2018, 51 :1597-1604
[3]   ACCURATE EMPIRICAL SPIN-ORBIT-COUPLING PARAMETERS ZETA(ND) FOR GASEOUS ND(Q) TRANSITION-METAL IONS - THE PARAMETRICAL MULTIPLET TERM MODEL [J].
BENDIX, J ;
BRORSON, M ;
SCHAFFER, CE .
INORGANIC CHEMISTRY, 1993, 32 (13) :2838-2849
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Magnetic properties of the helimagnet Cr1/3NbS2 observed by μSR [J].
Braam, D. ;
Gomez, C. ;
Tezok, S. ;
de Mello, E. V. L. ;
Li, L. ;
Mandrus, D. ;
Kee, Hae-Young ;
Sonier, J. E. .
PHYSICAL REVIEW B, 2015, 91 (14)
[6]   Magnetism in two-dimensional van der Waals materials [J].
Burch, Kenneth S. ;
Mandrus, David ;
Park, Je-Geun .
NATURE, 2018, 563 (7729) :47-52
[7]   Overview and advances in a layered chiral helimagnet Cr1/3NbS2 [J].
Cao, Y. ;
Huang, Z. ;
Yin, Y. ;
Xie, H. ;
Liu, B. ;
Wang, W. ;
Zhu, C. ;
Mandrus, D. ;
Wang, L. ;
Huang, W. .
MATERIALS TODAY ADVANCES, 2020, 7
[8]   Spin structure of the anisotropic helimagnet Cr1/3NbS2 in a magnetic field [J].
Chapman, Benjamin J. ;
Bornstein, Alexander C. ;
Ghimire, Nirmal J. ;
Mandrus, David ;
Lee, Minhyea .
APPLIED PHYSICS LETTERS, 2014, 105 (07)
[9]   Giant Chiral Optical Response from a Twisted-Arc Metamaterial [J].
Cui, Yonghao ;
Kang, Lei ;
Lan, Shoufeng ;
Rodrigues, Sean ;
Cai, Wenshan .
NANO LETTERS, 2014, 14 (02) :1021-1025
[10]   Topological spin/structure couplings in layered chiral magnet Cr1/3TaS2: The discovery of spiral magnetic superstructure [J].
Du, Kai ;
Huang, Fei-Ting ;
Kim, Jaewook ;
Lim, Seong Joon ;
Gamage, Kasun ;
Yang, Junjie ;
Mostovoy, Maxim ;
Garlow, Joseph ;
Han, Myung-Geun ;
Zhu, Yimei ;
Cheong, Sang-Wook .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (40)