Prediction of estimated risk for bipolar disorder using machine learning and structural MRI features

被引:10
作者
Mikolas, Pavol [1 ]
Marxen, Michael [1 ]
Riedel, Philipp [1 ]
Broeckel, Kyra [1 ]
Martini, Julia [1 ]
Huth, Fabian [1 ]
Berndt, Christina [1 ]
Vogelbacher, Christoph [2 ,3 ,4 ,5 ]
Jansen, Andreas [2 ,3 ,4 ,5 ]
Kircher, Tilo [2 ,3 ,4 ,5 ]
Falkenberg, Irina [2 ,3 ,4 ,5 ]
Lambert, Martin [6 ]
Kraft, Vivien [6 ]
Leicht, Gregor [6 ]
Mulert, Christoph [4 ,5 ,6 ,7 ]
Fallgatter, Andreas J. [8 ]
Ethofer, Thomas [8 ]
Rau, Anne [8 ]
Leopold, Karolina [9 ,10 ]
Bechdolf, Andreas [9 ,10 ]
Reif, Andreas [11 ]
Matura, Silke [11 ]
Bermpohl, Felix [12 ]
Fiebig, Jana [12 ]
Stamm, Thomas [12 ,13 ]
Correll, Christoph U. [14 ,15 ,16 ]
Juckel, Georg [17 ]
Flasbeck, Vera [17 ]
Ritter, Philipp [1 ]
Bauer, Michael [1 ]
Pfennig, Andrea [1 ]
机构
[1] Tech Univ Dresden, Carl Gustav Carus Univ Hosp, Dept Psychiat & Psychotherapy, Dresden, Germany
[2] Univ Marburg, Fac Med, Core Facil Brainimaging, Marburg, Germany
[3] Univ Marburg, Dept Psychiat, Marburg, Germany
[4] Univ Marburg, Ctr Mind Brain & Behav CMBB, Marburg, Germany
[5] Justus Liebig Univ Giessen, Giessen, Germany
[6] Univ Med Ctr Hamburg Eppendorf, Dept Psychiat & Psychotherapy, Hamburg, Germany
[7] Justus Liebig Univ Giessen, Ctr Psychiat, Giessen, Germany
[8] Univ Tubingen, Tuebingen Ctr MentalHealth, Dept Psychiat, Tubingen, Germany
[9] Charite Univ Med Berlin, Dept Psychiat Psychotherapy & Psychosomat Med, Vivantes Hosp Urban, Berlin, Germany
[10] Charite Univ Med Berlin, Vivantes Hosp Friedrichshain, Berlin, Germany
[11] Goethe Univ, Univ Hosp Frankfurt, Dept Psychiat Psychosomat Med & Psychotherapy, Frankfurt, Germany
[12] Charite, Dept Psychiat & Psychotherapy, Charite Campus Mitte, Berlin, Germany
[13] Brandenburg Med Sch Theodor Fontane, Dept Clin Psychiat & Psychotherapy, Neuruppin, Germany
[14] Charite Univ Med Berlin, Dept Child & Adolescent Psychiat, Berlin, Germany
[15] Zucker Hillside Hosp, Dept Psychiat, Northwell Hlth, Glen Oaks, NY USA
[16] Donald & Barbara Zucker Sch Med Hofstra Northwell, Dept Psychiat & Mol Med, Hempstead, NY USA
[17] Ruhr Univ, LWL Univ Hosp, Dept Psychiat Psychotherapy & Prevent Med, Bochum, Germany
关键词
Diagnostic classification; machine learning; risk of bipolar disorder; structural MRI; SPECTRUM DISORDER; MENTAL-HEALTH; YOUNG-ADULTS; AT-RISK; INDIVIDUALS; PREVALENCE; PSYCHOSIS; ADOLESCENTS; VALIDATION; CALCULATOR;
D O I
10.1017/S0033291723001319
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
BackgroundIndividuals with bipolar disorder are commonly correctly diagnosed a decade after symptom onset. Machine learning techniques may aid in early recognition and reduce the disease burden. As both individuals at risk and those with a manifest disease display structural brain markers, structural magnetic resonance imaging may provide relevant classification features. MethodsFollowing a pre-registered protocol, we trained linear support vector machine (SVM) to classify individuals according to their estimated risk for bipolar disorder using regional cortical thickness of help-seeking individuals from seven study sites (N = 276). We estimated the risk using three state-of-the-art assessment instruments (BPSS-P, BARS, EPIbipolar). ResultsFor BPSS-P, SVM achieved a fair performance of Cohen's kappa of 0.235 (95% CI 0.11-0.361) and a balanced accuracy of 63.1% (95% CI 55.9-70.3) in the 10-fold cross-validation. In the leave-one-site-out cross-validation, the model performed with a Cohen's kappa of 0.128 (95% CI -0.069 to 0.325) and a balanced accuracy of 56.2% (95% CI 44.6-67.8). BARS and EPIbipolar could not be predicted. In post hoc analyses, regional surface area, subcortical volumes as well as hyperparameter optimization did not improve the performance. ConclusionsIndividuals at risk for bipolar disorder, as assessed by BPSS-P, display brain structural alterations that can be detected using machine learning. The achieved performance is comparable to previous studies which attempted to classify patients with manifest disease and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted a leave-one-site-out cross-validation. Whole-brain cortical thickness seems to be superior to other structural brain features.
引用
收藏
页码:278 / 288
页数:11
相关论文
共 55 条
[1]   Longitudinal Cortical Thickness Changes in Bipolar Disorder and the Relationship to Genetic Risk, Mania, and Lithium Use [J].
Abe, Christoph ;
Liberg, Benny ;
Song, Jie ;
Bergen, Sarah E. ;
Petrovic, Predrag ;
Ekman, Carl Johan ;
Sellgren, Carl M. ;
Ingvar, Martin ;
Landen, Mikael .
BIOLOGICAL PSYCHIATRY, 2020, 87 (03) :271-281
[2]   The predictive validity of bipolar at-risk (prodromal) criteria in help-seeking adolescents and young adults: a prospective study [J].
Bechdolf, Andreas ;
Ratheesh, Aswin ;
Cotton, Sue M. ;
Nelson, Barnaby ;
Chanen, Andrew M. ;
Betts, Jennifer ;
Bingmann, Tiffany ;
Yung, Alison R. ;
Berk, Michael ;
McGorry, Patrick D. .
BIPOLAR DISORDERS, 2014, 16 (05) :493-504
[3]   Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification [J].
Boehle, Moritz ;
Eitel, Fabian ;
Weygandt, Martin ;
Ritter, Kerstin .
FRONTIERS IN AGING NEUROSCIENCE, 2019, 11
[4]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[5]   What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from theENIGMABipolar Disorder Working Group [J].
Ching, Christopher R. K. ;
Hibar, Derrek P. ;
Gurholt, Tiril P. ;
Nunes, Abraham ;
Thomopoulos, Sophia I. ;
Abe, Christoph ;
Agartz, Ingrid ;
Brouwer, Rachel M. ;
Cannon, Dara M. ;
de Zwarte, Sonja M. C. ;
Eyler, Lisa T. ;
Favre, Pauline ;
Hajek, Tomas ;
Haukvik, Unn K. ;
Houenou, Josselin ;
Landen, Mikael ;
Lett, Tristram A. ;
McDonald, Colm ;
Nabulsi, Leila ;
Patel, Yash ;
Pauling, Melissa E. ;
Paus, Tomas ;
Radua, Joaquim ;
Soeiro-de-Souza, Marcio G. ;
Tronchin, Giulia ;
van Haren, Neeltje E. M. ;
Vieta, Eduard ;
Walter, Henrik ;
Zeng, Ling-Li ;
Alda, Martin ;
Almeida, Jorge ;
Alnaes, Dag ;
Alonso-Lana, Silvia ;
Altimus, Cara ;
Bauer, Michael ;
Baune, Bernhard T. ;
Bearden, Carrie E. ;
Bellani, Marcella ;
Benedetti, Francesco ;
Berk, Michael ;
Bilderbeck, Amy C. ;
Blumberg, Hilary P. ;
Boen, Erlend ;
Bollettini, Irene ;
del Mar Bonnin, Caterina ;
Brambilla, Paolo ;
Canales-Rodriguez, Erick J. ;
Caseras, Xavier ;
Dandash, Orwa ;
Dannlowski, Udo .
HUMAN BRAIN MAPPING, 2022, 43 (01) :56-82
[6]   Will machine learning applied to neuroimaging in bipolar disorder help the clinician? A critical review and methodological suggestions [J].
Claude, Laurie-Anne ;
Houenou, Josselin ;
Duchesnay, Edouard ;
Favre, Pauline .
BIPOLAR DISORDERS, 2020, 22 (04) :334-355
[7]   The Bipolar Prodrome Symptom Interview and Scale-Prospective (BPSS-P): description and validation in a psychiatric sample and healthy controls [J].
Correll, Christoph U. ;
Olvet, Doreen M. ;
Auther, Andrea M. ;
Hauser, Marta ;
Kishimoto, Taishiro ;
Carrion, Ricardo E. ;
Snyder, Stephanie ;
Cornblatt, Barbara A. .
BIPOLAR DISORDERS, 2014, 16 (05) :505-522
[8]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[9]  
Dwyer DB, 2018, ANNU REV CLIN PSYCHO, V14, P91, DOI [10.1146/annurev-clinpsy-032816045037, 10.1146/annurev-clinpsy-032816-045037]
[10]   MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites [J].
Esteban, Oscar ;
Birman, Daniel ;
Schaer, Marie ;
Koyejo, Oluwasanmi O. ;
Poldrack, Russell A. ;
Gorgolewski, Krzysztof J. .
PLOS ONE, 2017, 12 (09)