Ion trap quantum computing using integrated photonics

被引:2
作者
Mehta, Karan [1 ,2 ]
Vasquez, Alfredo Ricci [1 ]
Mordini, Carmelo [1 ]
Beck, Gillenhaal [1 ]
Malinowski, Maciej [1 ,3 ]
Stadler, Martin [1 ]
Zhang, Chi [1 ,4 ]
Kienzler, Daniel [1 ]
Home, Jonathan [1 ,5 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, Otto Stern Weg 1, Zurich, Switzerland
[2] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
[3] Oxford Ion, Oxford, England
[4] Tsinghua Univ, Beijing, Peoples R China
[5] Swiss Fed Inst Technol, Quantum Ctr, Otto Stern Weg 1, Zurich, Switzerland
来源
INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXVII | 2023年 / 12424卷
基金
瑞士国家科学基金会;
关键词
Quantum Computing; Trapped ions; integrated optics; waveguides;
D O I
10.1117/12.2655382
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Atomic ions controlled by laser light are among the leading candidates for large scale quantum computing. However operational systems today require vast scaling to reach levels capable of useful computational tasks. The integration of light delivery will be an essential component of this for the trapped-ion approach. I will describe results in which the use of photonics integrated into ion trap chips has allowed us to perform high fidelity two-qubit gates, which are an essential building block for quantum computers. These systems have now been extended to the operation of multiple trap zones, and the creation of novel optical fields for ion trap control while a new generation of chips allowing integration of all required wavelengths as well as optimised light delivery offers further enhancements in performance and scaling.
引用
收藏
页数:5
相关论文
共 16 条
[1]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[2]   High-Fidelity Bell-State Preparation with 40Ca+ Optical Qubits [J].
Clark, Craig R. ;
Tinkey, Holly N. ;
Sawyer, Brian C. ;
Meier, Adam M. ;
Burkhardt, Karl A. ;
Seck, Christopher M. ;
Shappert, Christopher M. ;
Guise, Nicholas D. ;
Volin, Curtis E. ;
Fallek, Spencer D. ;
Hayden, Harley T. ;
Rellergert, Wade G. ;
Brown, Kenton R. .
PHYSICAL REVIEW LETTERS, 2021, 127 (13)
[3]   High-Fidelity Universal Gate Set for 9Be+ Ion Qubits [J].
Gaebler, J. P. ;
Tan, T. R. ;
Lin, Y. ;
Wan, Y. ;
Bowler, R. ;
Keith, A. C. ;
Glancy, S. ;
Coakley, K. ;
Knill, E. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[4]   Integrated Optical Addressing of a Trapped Ytterbium Ion [J].
Ivory, M. ;
Setzer, W. J. ;
Karl, N. ;
McGuinness, H. ;
DeRose, C. ;
Blain, M. ;
Stick, D. ;
Gehl, M. ;
Parazzoli, L. P. .
PHYSICAL REVIEW X, 2021, 11 (04)
[5]  
Malinowski M., 2021, ARXIV
[6]   Integrated optical multi-ion quantum logic [J].
Mehta, Karan K. ;
Zhang, Chi ;
Malinowski, Maciej ;
Nguyen, Thanh-Long ;
Stadler, Martin ;
Home, Jonathan P. .
NATURE, 2020, 586 (7830) :533-+
[7]  
Mehta KK, 2016, NAT NANOTECHNOL, V11, P1066, DOI [10.1038/nnano.2016.139, 10.1038/NNANO.2016.139]
[8]   Integrated multi-wavelength control of an ion qubit [J].
Niffenegger, R. J. ;
Stuart, J. ;
Sorace-Agaskar, C. ;
Kharas, D. ;
Bramhavar, S. ;
Bruzewicz, C. D. ;
Loh, W. ;
Maxson, R. T. ;
McConnell, R. ;
Reens, D. ;
West, G. N. ;
Sage, J. M. ;
Chiaverini, J. .
NATURE, 2020, 586 (7830) :538-+
[9]   Quantum Computing in the NISQ era and beyond [J].
Preskill, John .
QUANTUM, 2018, 2
[10]   Realization of Real-Time Fault-Tolerant Quantum Error Correction [J].
Ryan-Anderson, C. ;
Bohnet, J. G. ;
Lee, K. ;
Gresh, D. ;
Hankin, A. ;
Gaebler, J. P. ;
Francois, D. ;
Chernoguzov, A. ;
Lucchetti, D. ;
Brown, N. C. ;
Gatterman, T. M. ;
Halit, S. K. ;
Gilmore, K. ;
Gerber, J. A. ;
Neyenhuis, B. ;
Hayes, D. ;
Stutz, R. P. .
PHYSICAL REVIEW X, 2021, 11 (04)