Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway

被引:53
作者
Sirengo, Keith [1 ]
Babu, Aswathy [1 ,2 ]
Brennan, Barry [1 ]
Pillai, Suresh C. [1 ,2 ]
机构
[1] Atlantic Technol Univ, Dept Environm Sci, Nanotechnol & Bioengn Res Grp, ATU Sligo, Ash Lane, Sligo 9150, Ireland
[2] Atlantic Technol Univ, Hlth & Biomed HEAL Strateg Res Ctr, ATU Sligo, Ash Lane, Sligo F91 YW50, Ireland
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 81卷
关键词
Thermal stability; Ionic liquids; Sodium -ion batteries; Cycle stability; Ionic conductivity; HIGH-ENERGY-DENSITY; CAPACITY NEGATIVE ELECTRODE; CHARGE-DISCHARGE PROPERTIES; HIGH TRANSFERENCE NUMBER; NA-ION; ROOM-TEMPERATURE; SOLID-ELECTROLYTE; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL; MOLECULAR-DYNAMICS;
D O I
10.1016/j.jechem.2023.02.046
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Sodium-ion batteries are expected to be more affordable for stationary applications than lithium-ion batteries, while still offering sufficient energy density and operational capacity to power a significant segment of the battery market. Despite this, thermal runaway explosions associated with organic electrolytes have led to concerns regarding the safety of sodium-ion batteries. Among electrolytes, ionic liquids are promising because they have negligible vapor pressure and show high thermal and electrochemical stability. This review discusses the safety contributions of these electrolyte properties for high-temperature applications. The ionic liquids provide thermal stability while at the same time promoting high-voltage window battery operations. Moreover, apart from cycle stability, there is an additional safety feature attributed to modified ultra-concentrated ionic liquid electrolytes. Concerning these contributions, the following have been discussed, heat sources and thermal runaway mechanisms, thermal stability, the electrochemical decomposition mechanism of stable cations, and the ionic transport mechanism of ultra-concentrated ionic liquid electrolytes. In addition, the contributions of hybrid electrolyte systems consisting of ionic liquids with either organic carbonate or polymers are also discussed. The thermal stability of ionic liquids is found to be the main contributor to cell safety and cycle stability. For high-temperature applications where electrolyte safety, capacity, and cycle stability are important, highly concentrated ionic liquid electrolyte systems are potential solutions for sodium-ion battery applications.(c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:321 / 338
页数:18
相关论文
共 289 条
[1]   The formation and stability of the solid electrolyte interface on the graphite anode [J].
Agubra, Victor A. ;
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2014, 268 :153-162
[2]   Microwave-Assisted Synthesis of Some Potential Bioactive Imidazolium-Based Room-Temperature Ionic Liquids [J].
Albalawi, Ahmed H. ;
El-Sayed, Wael S. ;
Aljuhani, Ateyatallah ;
Almutairi, Saud M. ;
Rezki, Nadjet ;
Aouad, Mohamed R. ;
Messali, Mouslim .
MOLECULES, 2018, 23 (07)
[3]   Electronic structure, ion diffusion and cation doping in the Na4VO(PO4)2 compound as a cathode material for Na-ion batteries [J].
Aparicio, Pablo A. ;
de Leeuw, Nora H. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (12) :6653-6659
[4]   Synthesis of hydrophobic ionic liquids for electrochemical applications [J].
Appetecchi, Giovanni B. ;
Scaccia, Silvera ;
Tizzani, Cosimo ;
Alessandrini, Fabrizio ;
Passerini, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (09) :A1685-A1691
[5]   Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids [J].
Appetecchi, Giovanni B. ;
Montanino, Maria ;
Zane, Daniela ;
Carewska, Maria ;
Alessandrini, Fabrizio ;
Passerini, Stefano .
ELECTROCHIMICA ACTA, 2009, 54 (04) :1325-1332
[6]   Ionic liquids and organic ionic plastic crystals utilizing small phosphonium cations [J].
Armel, Vanessa ;
Velayutham, David ;
Sun, Jiazeng ;
Howlett, Patrick C. ;
Forsyth, Maria ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (21) :7640-7650
[7]   Protic and Aprotic Ionic Liquids in Combination with Hard Carbon for Lithium-Ion and Sodium-Ion Batteries [J].
Arnaiz, Maria ;
Huang, Peihua ;
Ajuria, Jon ;
Rojo, Teofilo ;
Goikolea, Eider ;
Balducci, Andrea .
BATTERIES & SUPERCAPS, 2018, 1 (06) :204-208
[8]   Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge [J].
Avireddy, Hemesh ;
Byles, Bryan W. ;
Pinto, David ;
Delgado Galindo, Jose Miguel ;
Jacas Biendicho, Jordi ;
Wan, Xuehang ;
Flox, Cristina ;
Crosnier, Olivier ;
Brousse, Thierry ;
Pomerantseva, Ekaterina ;
Morante, Joan Ramon ;
Gogotsi, Yury .
NANO ENERGY, 2019, 64
[9]   A review of carbon materials and their composites with alloy metals for sodium ion battery anodes [J].
Balogun, Muhammad-Sadeeq ;
Luo, Yang ;
Qiu, Weitao ;
Liu, Peng ;
Tong, Yexiang .
CARBON, 2016, 98 :162-178
[10]   Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquids [J].
Basile, A. ;
Yoon, H. ;
MacFarlane, D. R. ;
Forsyth, M. ;
Howlett, P. C. .
ELECTROCHEMISTRY COMMUNICATIONS, 2016, 71 :48-51