Effects of polysaccharides from Lyophyllum decastes (Fr.) Singer on gut microbiota via in vitro-simulated digestion and fermentation

被引:8
|
作者
Zhang, Fangfang [1 ]
Xiao, Ying [2 ]
Pan, Liang [1 ]
Yu, Ling [1 ]
Liu, Yanfang [3 ,4 ]
Li, Deshun [3 ,4 ]
Liu, Xiaojie [2 ]
机构
[1] Shanghai Inst Technol, Sch Perfume & Aroma Technol, Shanghai, Peoples R China
[2] Shanghai Urban Construct Vocat Coll, Sch Hlth & Social Care, Shanghai, Peoples R China
[3] Minist Agr & Rural Affairs, Natl Engn Res Ctr Edible Fungi, Key Lab Edible Fungi Resources & Utilizat South, Shanghai, Peoples R China
[4] Shanghai Acad Agr Sci, Inst Edible Fungi, Shanghai, Peoples R China
关键词
Lyophyllum decastes (Fr; ) Singer; polysaccharides; simulated digestion; fermentation; short-chain fatty acids; DEGRADATION; METABOLISM; MUSHROOMS; GLUCANS; GROWTH; FIBER;
D O I
10.3389/fmicb.2023.1083917
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
IntroductionLyophyllum decastes (Fr.) Singer polysaccharides (LDSPs) have been verified to possess strong biological properties. However, the effects of LDSPs on intestinal microbes and their metabolites have rarely been addressed. MethodsThe in vitro-simulated saliva-gastrointestinal digestion and human fecal fermentation were used to evaluate the effects of LDSPs on non-digestibility and intestinal microflora regulation in the present study. ResultsThe results showed a slight increase in the content of the reducing end of the polysaccharide chain and no obvious change in the molecular weight during in vitro digestion. After 24 h in vitro fermentation, LDSPs were degraded and utilized by human gut microbiota, and LDSPs could be transformed into short-chain fatty acids leading to significant (p < 0.05) decrease in the pH of the fermentation solution. The digestion did not remarkably affect the overall structure of LDSPs and 16S rRNA analysis revealed distinct shifts in the gut microbial composition and community diversity of the LDSPs-treated cultures, compared with the control group. Notably, the LDSPs group directed a targeted promotion of the abundance of butyrogenic bacteria, including Blautia, Roseburia, and Bacteroides, and an increase in the n-butyrate level. DiscussionThese findings suggest that LDSPs might be a potential prebiotic to provide a health benefit.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Simulated Digestion and Fermentation in Vitro by Human Gut Microbiota of Polysaccharides from Bee Collected Pollen of Chinese Wolfberry
    Zhou, Wangting
    Yan, Yamei
    Mi, Jia
    Zhang, Hongcheng
    Lu, Lu
    Luo, Qing
    Li, Xiaoying
    Zeng, Xiaoxiong
    Cao, Youlong
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (04) : 898 - 907
  • [2] Simulated gastrointestinal digestion and gut microbiota fermentation of polysaccharides from Agaricus bisporus
    Fu, Chujing
    Ye, Kai
    Ma, Sai
    Du, Hengjun
    Chen, Shiguo
    Liu, Donghong
    Ma, Gaoxing
    Xiao, Hang
    FOOD CHEMISTRY, 2023, 418
  • [3] Simulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from Helicteres angustifolia L
    Chen, Ligen
    Liu, Junwei
    Ge, Xiaodong
    Xu, Wei
    Chen, Yun
    Li, Fengwei
    Cheng, Delin
    Shao, Rong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 141 : 1065 - 1071
  • [4] Simulated Digestion and Fermentation In Vitro by Obese Human Gut Microbiota of Sulforaphane from Broccoli Seeds
    Sun, Yifei
    Tang, Zhaocheng
    Hao, Tingting
    Qiu, Zeyu
    Zhang, Baolong
    FOODS, 2022, 11 (24)
  • [5] In vivo absorption, in vitro simulated digestion, and fecal fermentation properties of Imperata cylindrica polysaccharides and their effects on gut microbiota
    Yu, Wenchen
    Wang, Junwen
    Xiong, Yi
    Liu, Jiaren
    Baranenko, Denis
    Zhang, Yingchun
    Lu, Weihong
    FOOD CHEMISTRY, 2024, 461
  • [6] Comprehensive assessment of Hypsizygus marmoreus polysaccharides through simulated digestion and gut microbiota fermentation in vitro
    Ye, Kai
    Fu, Chujing
    Ma, Sai
    Du, Hengjun
    Chen, Shiguo
    Liu, Donghong
    Ma, Gaoxing
    Xiao, Hang
    FOOD HYDROCOLLOIDS, 2023, 144
  • [7] Effects of in vitro digestion and fermentation of Nostoc commune Vauch. polysaccharides on properties and gut microbiota
    Li, Hailong
    Liu, Su
    Liu, Yue
    Li, Weinan
    Niu, Aijing
    Ren, Ping
    Liu, Yingying
    Jiang, Chengshuang
    Inam, Muhammad
    Guan, Lili
    CARBOHYDRATE POLYMERS, 2022, 281
  • [8] In vitro digestion under simulated saliva, gastric and small intestinal conditions and fermentation by human gut microbiota of polysaccharides from the fruits of Lycium barbarum
    Ding, Yu
    Yan, Yamei
    Peng, Yujia
    Chen, Dan
    Mi, Jia
    Lu, Lu
    Luo, Qing
    Li, Xiaoying
    Zeng, Xiaoxiong
    Cao, Youlong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 125 : 751 - 760
  • [9] In vitro digestion and human gut microbiota fermentation of Bletilla striata polysaccharides and oligosaccharides
    Wang, Qiqi
    Chen, Huimin
    Yin, Mingzhu
    Cheng, Xue
    Xia, Hui
    Hu, Haiming
    Zheng, Junping
    Zhang, Zhigang
    Liu, Hongtao
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [10] In vitro digestion and fermentation behaviors of polysaccharides from Choerospondias axillaris fruit and its effect on human gut microbiota
    Dong, Jinjiao
    Wang, Wenjun
    Zheng, Guodong
    Wu, Nansheng
    Xie, Jingjing
    Xiong, Shiyi
    Tian, Panting
    Li, Jingen
    CURRENT RESEARCH IN FOOD SCIENCE, 2024, 8