Photocatalysis of low-density polyethylene using FKMW-ZnO NPs: optimization and predication model using a radial basis function neural network ensemble system

被引:0
|
作者
Noman, Efaq Ali [1 ]
Al-Gheethi, Adel Ali [2 ,3 ]
Alzaeemi, Shehab Abdulhabib [4 ]
Mohamed, Radin Maya Saphira Radin [5 ]
Gaik, Tay Kim [4 ]
机构
[1] Taiz Univ, Fac Sci Appl, Dept Microbiol, Taizi, Yemen
[2] Univ Newcastle, Global Ctr Environm Remediat GCER, Newcastle, Australia
[3] CRC Contaminat Assessment & Remediat Environm CRC, Newcastle, Australia
[4] Univ Tun Hussein Onn Malaysia, Fac Elect & Elect Engn, Batu Pahat 86400, Johor, Malaysia
[5] Univ Tun Hussein Onn Malaysia, Inst Integrated Engn, Micropollutant Res Ctr MPRC, Batu Pahat 86400, Johor, Malaysia
关键词
Low-density polyethylene; Bio-nanoparticles; Industrial application; Optimization; Photocatalysis; Predication model; ZINC-OXIDE NANOPARTICLES; PHOTODEGRADATION; DEGRADATION; EXTRACT;
D O I
10.1007/s10098-023-02718-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The present study aimed to investigate the efficiency of biosynthesized zinc oxide nanoparticles in fungal supernatant grown in kitchen wastewater with microelectronic sludge (FKMW-ZnO NPs) to be used in the degradation low-density polyethylene (LDPE) in aqueous solution. The photocatalysis process was optimized using response surface methodology as a function of four independent factors included LDPE concentrations x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {x_{1} } \right)$$\end{document} (100-500 mg/100 mL), FKMW-ZnO NPs concentrations x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {x_{2} } \right)$$\end{document} (10-100 mg/100 mL), time x3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {x_{3} } \right)$$\end{document} (1-6 h) and pH x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {x_{4} } \right)$$\end{document} (4-9). The maximum photocatalysis of LDPE was 45.43% optimized with 229.96 mg LDPE/100 mL, 100 mg FKMW-ZnO NPs/100 mL at pH 7 and after one hour with R2 is 0.7377. Microstructure and chemical structure analysis showed a significant change in the chemical structure of the photocatalysis of LDPE because of FKMW-ZnO NPs. The mathematical predication model using a radial basis function neural network ensemble system (RBFNNES) provided more accurate prediction model 89.2857% with R2 = 0.8688. However, RBFNNES revealed that FKMW-ZnO NPs and LDPE have unstable behaviour towards the investigated factor and the interaction between these factors where the error was increasing with the increasing the time of neural network which indicates that the obtained efficiency in the optimization study might be not applicable in the large scales or in different environmental factors. More optimization with a wide range of factors is required to understand the applicability of FKMW-ZnO NPs in remediation of LDPE in the environment.
引用
收藏
页码:2203 / 2218
页数:16
相关论文
共 9 条
  • [1] OPTIMIZATION OF THE AUTOMOTIVE AIR CONDITIONING SYSTEM USING RADIAL BASIS FUNCTION NEURAL NETWORK
    Fan, Pingqing
    Ma, Xipei
    Chen, Yong
    Yuan, Tao
    Liu, Tianhong
    THERMAL SCIENCE, 2022, 26 (4B): : 3477 - 3489
  • [2] Low-density polyethylene tubular reactor control using neural Wiener model predictive control
    Muhammad, Dinie
    Rohman, Fakhrony S.
    Ahmad, Zainal
    Aziz, Norashid
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2021, 16 (06)
  • [3] Optimization of the Amount of ZnO, CuO, and Ag Nanoparticles on Antibacterial Properties of Low-Density Polyethylene (LDPE) Films Using the Response Surface Method
    Dehghani, Samira
    Peighambardoust, Seyed Hadi
    Peighambardoust, Seyed Jamaleddin
    Fasihnia, Seyedeh Homa
    Khosrowshahi, Nader Karimian
    Gullon, Beatriz
    Lorenzo, Jose M.
    FOOD ANALYTICAL METHODS, 2021, 14 (01) : 98 - 107
  • [4] Nonlinear system modeling using a self-organizing recurrent radial basis function neural network
    Han, Hong-Gui
    Guo, Ya-Nan
    Qiao, Jun-Fei
    APPLIED SOFT COMPUTING, 2018, 71 : 1105 - 1116
  • [5] Optimization of the Amount of ZnO, CuO, and Ag Nanoparticles on Antibacterial Properties of Low-Density Polyethylene (LDPE) Films Using the Response Surface Method
    Samira Dehghani
    Seyed Hadi Peighambardoust
    Seyed Jamaleddin Peighambardoust
    Seyedeh Homa Fasihnia
    Nader Karimian Khosrowshahi
    Beatriz Gullón
    Jose M. Lorenzo
    Food Analytical Methods, 2021, 14 : 98 - 107
  • [6] A Hybrid Metaheuristic Embedded System for Intelligent Vehicles Using Hypermutated Firefly Algorithm Optimized Radial Basis Function Neural Network
    Huang, Hsu-Chih
    Lin, Shao-Kang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (02) : 1062 - 1069
  • [7] CFD modelling and multi-objective optimization of MHO for hydrodynamic cavitation generator using a radial basis function neural network, and NSGA-II
    Osman, Haitham
    Hosseini, Seyyed Hossein
    Elsayed, Khairy
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2023, 190
  • [8] Modeling and Optimization of Microbial Hyaluronic Acid Production by Streptococcus zooepidemicus Using Radial Basis Function Neural Network Coupling Quantum-Behaved Particle Swarm Optimization Algorithm
    Liu, Long
    Sun, Jun
    Xu, Wenbo
    Du, Guocheng
    Chen, Jian
    BIOTECHNOLOGY PROGRESS, 2009, 25 (06) : 1819 - 1825
  • [9] Burning Side Reaction Model of the INVISTA Oxidation Process Using a Radial Basis Function Neural Network Integrated with Partial Mutual Information-Least Square Regression
    Chen, Chao
    Yan, Xuefeng
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2015, 48 (04) : 281 - 291