A Parameter Estimation of Photovoltaic Models Using a Boosting Flower Pollination Algorithm

被引:2
作者
Liu, Shuai [1 ,2 ]
Yang, Yuqi [3 ]
Qin, Hui [1 ,2 ]
Liu, Guanjun [1 ,2 ]
Qu, Yuhua [1 ,2 ]
Deng, Shan [1 ,2 ]
Gao, Yuan [1 ,2 ]
Li, Jiangqiao [1 ,2 ]
Guo, Jun [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Digital Valley Sci & Technol, Wuhan 430074, Peoples R China
[3] China Yangtze Power Co Ltd, Hubei Key Lab Intelligent Yangtze & Hydroelect Sci, Yichang 443000, Peoples R China
关键词
photovoltaic models; parameter estimation; energy systems; flower pollination algorithm; IDENTIFICATION; CELL; EXTRACTION;
D O I
10.3390/s23198324
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
An accurate and reliable estimation of photovoltaic models holds immense significance within the realm of energy systems. In pursuit of this objective, a Boosting Flower Pollination Algorithm (BFPA) was introduced to facilitate the robust identification of photovoltaic model parameters and enhance the conversion efficiency of solar energy into electrical energy. The incorporation of a Gaussian distribution within the BFPA serves the dual purpose of conserving computational resources and ensuring solution stability. A population clustering strategy is implemented to steer individuals in the direction of favorable population evolution. Moreover, adaptive boundary handling strategies are deployed to mitigate the adverse effects of multiple individuals clustering near problem boundaries. To demonstrate the reliability and effectiveness of the BFPA, it is initially employed to extract unknown parameters from well-established single-diode, double-diode, and photovoltaic module models. In rigorous benchmarking against eight control methods, statistical tests affirm the substantial superiority of the BFPA over these controls. Furthermore, the BFPA successfully extracts model parameters from three distinct commercial photovoltaic cells operating under varying temperatures and light irradiances. A meticulous statistical analysis of the data underscores a high degree of consistency between simulated data generated by the BFPA and observed data. These successful outcomes underscore the potential of the BFPA as a promising approach in the field of photovoltaic modeling, offering substantial enhancements in both accuracy and reliability.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Parameter Estimation of the Bishop Photovoltaic Model Using a Genetic Algorithm
    Johana Restrepo-Cuestas, Bonie
    Montano, Jhon
    Andres Ramos-Paja, Carlos
    Adriana Trejos-Grisales, Luz
    Lucia Orozco-Gutierrez, Martha
    APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [42] Parameter Estimation of Photovoltaic Module Using Sine Cosine Algorithm
    Mohapatra, Alivarani
    Saiprakash, Chidurala
    Nayak, Byamakesh
    Samal, Sarita
    Raut, Usharani
    SMART TECHNOLOGIES FOR POWER AND GREEN ENERGY, STPGE 2022, 2023, 443 : 317 - 327
  • [43] A novel Elite Opposition-based Jaya algorithm for parameter estimation of photovoltaic cell models
    Wang, Long
    Huang, Chao
    OPTIK, 2018, 155 : 351 - 356
  • [44] Parameter extraction of photovoltaic models using an enhanced Levy flight bat algorithm
    Pires Deotti, Lucas Meirelles
    Rezende Pereira, Jose Luiz
    da Silva Junior, Ivo Chaves
    ENERGY CONVERSION AND MANAGEMENT, 2020, 221
  • [45] Static and dynamic solar photovoltaic models' parameters estimation using hybrid Rao optimization algorithm
    Wang, Shuhui
    Yu, Yongguang
    Hu, Wei
    JOURNAL OF CLEANER PRODUCTION, 2021, 315
  • [46] Extremal Nelder-Mead colony predation algorithm for parameter estimation of solar photovoltaic models
    Xu, Boyang
    Heidari, Ali Asghar
    Zhang, Siyang
    Chen, Huiling
    Shao, Qike
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (10) : 4176 - 4219
  • [47] Flower Pollination Algorithm for the optimization of stair casting parameter for the preparation of AMC
    Adithiyaa, T.
    Chandramohan, D.
    Sathish, T.
    MATERIALS TODAY-PROCEEDINGS, 2020, 21 : 882 - 886
  • [48] Application of Flower Pollination Algorithm to Parameter Identification of DC Motor Model
    Puangdownreong, D.
    Hlungnamtip, S.
    Thammarat, C.
    Nawikavatan, A.
    2017 INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2017,
  • [49] Photovoltaic parameter estimation using improved moth flame algorithms with local escape operators
    Qaraad, Mohammed
    Amjad, Souad
    Hussein, Nazar K.
    Badawy, Mahmoud
    Mirjalili, Seyedali
    Elhosseini, Mostafa A.
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 106
  • [50] Laplacian Nelder-Mead spherical evolution for parameter estimation of photovoltaic models
    Weng, Xuemeng
    Heidari, Ali Asghar
    Liang, Guoxi
    Chen, Huiling
    Ma, Xinsheng
    Mafarja, Majdi
    Turabieh, Hamza
    ENERGY CONVERSION AND MANAGEMENT, 2021, 243