A Parameter Estimation of Photovoltaic Models Using a Boosting Flower Pollination Algorithm

被引:2
|
作者
Liu, Shuai [1 ,2 ]
Yang, Yuqi [3 ]
Qin, Hui [1 ,2 ]
Liu, Guanjun [1 ,2 ]
Qu, Yuhua [1 ,2 ]
Deng, Shan [1 ,2 ]
Gao, Yuan [1 ,2 ]
Li, Jiangqiao [1 ,2 ]
Guo, Jun [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Digital Valley Sci & Technol, Wuhan 430074, Peoples R China
[3] China Yangtze Power Co Ltd, Hubei Key Lab Intelligent Yangtze & Hydroelect Sci, Yichang 443000, Peoples R China
关键词
photovoltaic models; parameter estimation; energy systems; flower pollination algorithm; IDENTIFICATION; CELL; EXTRACTION;
D O I
10.3390/s23198324
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
An accurate and reliable estimation of photovoltaic models holds immense significance within the realm of energy systems. In pursuit of this objective, a Boosting Flower Pollination Algorithm (BFPA) was introduced to facilitate the robust identification of photovoltaic model parameters and enhance the conversion efficiency of solar energy into electrical energy. The incorporation of a Gaussian distribution within the BFPA serves the dual purpose of conserving computational resources and ensuring solution stability. A population clustering strategy is implemented to steer individuals in the direction of favorable population evolution. Moreover, adaptive boundary handling strategies are deployed to mitigate the adverse effects of multiple individuals clustering near problem boundaries. To demonstrate the reliability and effectiveness of the BFPA, it is initially employed to extract unknown parameters from well-established single-diode, double-diode, and photovoltaic module models. In rigorous benchmarking against eight control methods, statistical tests affirm the substantial superiority of the BFPA over these controls. Furthermore, the BFPA successfully extracts model parameters from three distinct commercial photovoltaic cells operating under varying temperatures and light irradiances. A meticulous statistical analysis of the data underscores a high degree of consistency between simulated data generated by the BFPA and observed data. These successful outcomes underscore the potential of the BFPA as a promising approach in the field of photovoltaic modeling, offering substantial enhancements in both accuracy and reliability.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Solar photovoltaic parameter estimation using an improved equilibrium optimizer
    Abdel-Basset, Mohamed
    Mohamed, Reda
    Mirjalili, Seyedali
    Chakrabortty, Ripon K.
    Ryan, Michael J.
    SOLAR ENERGY, 2020, 209 : 694 - 708
  • [22] Chaos Game Optimization-Least Squares Algorithm for Photovoltaic Parameter Estimation
    Bogar, Esref
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (05) : 6321 - 6340
  • [23] Photovoltaic Parameter Estimation Using Heuristic Optimization
    Mirzapour, Omid
    Arpanahi, Sahand Karimi
    2017 IEEE 4TH INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2017, : 792 - 797
  • [24] Adapted flower pollination algorithm for a standalone solar photovoltaic system
    Awan, Muhammad Mateen Afzal
    Awan, Mehmoona Javed
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2022, 41 (04) : 118 - 127
  • [25] An enhanced Harris Hawk optimization algorithm for parameter estimation of single, double and triple diode photovoltaic models
    Ramadan, Abdelhady
    Kamel, Salah
    Korashy, Ahmed
    Almalaq, Abdulaziz
    Luis Dominguez-Garcia, Jose
    SOFT COMPUTING, 2022, 26 (15) : 7233 - 7257
  • [26] Parameter estimation of a photovoltaic array using direct search optimization algorithm
    Osheba, Dina S. M.
    Azazi, Haitham Z.
    Shokralla, S. S.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2017, 9 (04)
  • [27] Iterative Parameter Estimation for Photovoltaic Cell Models by Using the Hierarchical Principle
    Meng, Xiangxiang
    Ji, Yan
    Wang, Junwei
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (08) : 2583 - 2593
  • [28] Parameter Identification for Photovoltaic Models Using an Improved Learning Search Algorithm
    Huang, Ting
    Zhang, Chunliang
    Ouyang, Haibin
    Luo, Guangshun
    Li, Steven
    Zou, Dexuan
    IEEE ACCESS, 2020, 8 (08): : 116292 - 116309
  • [29] Parameter Estimation of Organic Photovoltaic Cells - A Three-Diode Approach Using Wind-Driven Optimization Algorithm
    Mathew, Derick
    Ram, J. Prasanth
    Pillai, Dhanup S.
    Kim, Young-Jin
    Elangovan, D.
    Laudani, Antonino
    Mahmud, Apel
    IEEE JOURNAL OF PHOTOVOLTAICS, 2022, 12 (01): : 327 - 336
  • [30] A population diversity-controlled differential evolution for parameter estimation of solar photovoltaic models
    Yu, Yang
    Wang, Kaiyu
    Zhang, Tengfei
    Wang, Yirui
    Peng, Chen
    Gao, Shangce
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 51