MIL-100(Fe)-derived catalysts for CO2 conversion via low- and high-temperature reverse water-gas shift reaction

被引:0
作者
Loe, Jesus Gandara [1 ,2 ]
Pena, Alejandro Pinzon [1 ,2 ]
Espejo, Juan Luis Martin [1 ,2 ]
Bobadilla, Luis F. [1 ,2 ]
Reina, Tomas Ramirez [1 ,2 ,3 ]
Pastor-Perez, Laura [1 ,2 ,3 ]
机构
[1] Univ Seville, Ctr Mixto CSIC, Dept Quim Inorgan, Av Americo Vespucio 49, Seville 41092, Spain
[2] Univ Seville, Ctr Mixto CSIC, Inst Ciencia Mat Sevilla, Av Americo Vespucio 49, Seville 41092, Spain
[3] Univ Surrey, Dept Chem & Proc Engn, Guildford GU2 7XH, England
关键词
CO; 2; conversion; MOF-derived catalysts; Fe-based catalysts; RWGS reaction; METAL-ORGANIC FRAMEWORK; PERFORMANCE; FE; REDUCTION; CARBIDE; CS;
D O I
10.1016/j.heliyon.2023.e16070
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fe-derived catalysts were synthesized by the pyrolysis of MIL-100 (Fe) metal-organic framework (MOF) and evaluated in the reverse water-gas shift (RWGS) reaction. The addition of Rh as a dopant by in-situ incorporation during the synthesis and wet impregnation was also considered. Our characterization data showed that the main active phase was a mixture of & alpha;-Fe, Fe3C, and Fe3O4 in all the catalysts evaluated. Additionally, small Rh loading leads to a decrease in the particle size in the active phase. Despite all three catalysts showing commendable CO selectivity levels, the C@Fe* catalyst showed the most promising performance at a temperature below 500 degrees C, attributed to the in-situ incorporation of Rh during the synthesis. Overall, this work showcases a strategy for designing novel Fe MOF-derived catalysts for RWGS reaction, opening new research opportunities for CO2 utilization schemes.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Rh doping effect on coking resistance of Ni/SBA-15 catalysts in dry reforming of methane [J].
Cai, Wen-Jia ;
Qian, Lin-Ping ;
Yue, Bin ;
He, He-Yong .
CHINESE CHEMICAL LETTERS, 2014, 25 (11) :1411-1415
[2]   Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: Controlled product selectivity and a mechanism study [J].
Chen, Xiaodong ;
Su, Xiong ;
Duan, Hongmin ;
Liang, Binglian ;
Huang, Yanqiang ;
Zhang, Tao .
CATALYSIS TODAY, 2017, 281 :312-318
[3]   Reduction of CO2 to CO via reverse water-gas shift reaction over CeO2 catalyst [J].
Dai, Bican ;
Cao, Shiquan ;
Xie, Hongmei ;
Zhou, Guilin ;
Chen, Shengming .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2018, 35 (02) :421-427
[4]   CO2 Reverse Water-Gas Shift Reaction on Mesoporous M-CeO2 Catalysts [J].
Dai, Bican ;
Zhou, Guilin ;
Ge, Shaobing ;
Xie, Hongmei ;
Jiao, Zhaojie ;
Zhang, Guizhi ;
Xiong, Kun .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2017, 95 (04) :634-642
[5]   HF-Free Synthesis of Nanoscale Metal-Organic Framework NMIL-100(Fe) as an Efficient Dye Adsorbent [J].
Duan, Shengxia ;
Li, Jiaxing ;
Liu, Xia ;
Wang, Yanan ;
Zeng, Suyuan ;
Shao, Dadong ;
Hayat, Tasawar .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (06) :3368-3378
[6]   Facile Synthesis of Iron-Based MOFs MIL-100(Fe) as Heterogeneous Catalyst in Kabachnick Reaction [J].
Elharony, Noura Elsayed ;
El Sayed, Ibrahim El Tantawy ;
Al-Sehemi, Abdullah G. ;
Al-Ghamdi, Ahmed A. ;
Abou-Elyazed, Ahmed S. .
CATALYSTS, 2021, 11 (12)
[7]   Pathways to achieve future CO2 emission reduction targets for bus transit networks [J].
Garcia, Antonio ;
Monsalve-Serrano, Javier ;
Sari, Rafael Lago ;
Tripathi, Shashwat .
ENERGY, 2022, 244
[8]   Comparative study of CO and CO2 hydrogenation over supported Rh-Fe catalysts [J].
Gogate, Makarand R. ;
Davis, Robert J. .
CATALYSIS COMMUNICATIONS, 2010, 11 (10) :901-906
[9]   The reverse water gas shift reaction: a process systems engineering perspective [J].
Gonzalez-Castano, Miriam ;
Dorneanu, Bogdan ;
Arellano-Garcia, Harvey .
REACTION CHEMISTRY & ENGINEERING, 2021, 6 (06) :954-976
[10]   Catalyst Stability-Bottleneck of Efficient Catalytic Pyrolysis [J].
Grams, Jacek ;
Ruppert, Agnieszka M. .
CATALYSTS, 2021, 11 (02) :1-24