High-impedance Fault Detection Method Based on Feature Extraction and Synchronous Data Divergence Discrimination in Distribution Networks

被引:5
|
作者
Liu, Yang [1 ]
Zhao, Yanlei [1 ]
Wang, Lei [1 ]
Fang, Chen [2 ]
Xie, Bangpeng [3 ]
Cui, Laixi [1 ]
机构
[1] Shandong Univ Technol, Sch Elect & Elect Technol, Zibo, Peoples R China
[2] State Grid Shanghai Elect Power Res Inst, Shanghai, Peoples R China
[3] State Grid Shanghai Pudong Elect Power Supply Co, Shanghai, Peoples R China
关键词
High-impedance fault; micro-phase measurement unit; fault detection; distribution network; optimal placement; WAVELET PACKET TRANSFORM; DISTRIBUTION FEEDERS; PMU PLACEMENT; IDENTIFICATION; SYNCHROPHASORS; DIAGNOSIS;
D O I
10.35833/MPCE.2021.000411
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-impedance faults (HIFs) in distribution networks may result in fires or electric shocks. However, considerable difficulties exist in HIF detection due to low-resolution measurements and the considerably weaker time-frequency characteristics. This paper presents a novel HIF detection method using synchronized current information. The method consists of two stages. In the first stage, joint key characteristics of the system are extracted with the minimal system prior knowledge to identify the global optimal micro-phase measurement unit (mu PMU) placement. In the second stage, the HIF is detected through a multivariate Jensen-Shannon divergence similarity measurement using high-resolution time-synchronized data in mu PMUs in a high-noise environment. l(2,1) principal component analysis (PCA), i.e., PCA based on the l(2,1) norm, is applied to an extracted system state and fault features derived from different resolution data in both stages. An economic observability index and HIF criteria are employed to evaluate the performance of placement method and to identify HIFs. Simulation results show that the method can reliably detect HIFs with reasonable detection accuracy in noisy environments.
引用
收藏
页码:1235 / 1246
页数:12
相关论文
共 50 条
  • [21] Detection of high-impedance fault in distribution network based on time-frequency entropy of wavelet transform
    Zhang, Shu
    Xiao, Xianyong
    He, Zhengyou
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 15 (06) : 844 - 853
  • [22] Detection of High Impedance Fault in Distribution Networks
    Kavaskar, Sekar
    Mohanty, Nalin Kant
    AIN SHAMS ENGINEERING JOURNAL, 2019, 10 (01) : 5 - 13
  • [23] A data-driven impedance estimation and matching method for high impedance fault detection and location of distribution networks
    Zhang, Zhenyu
    Li, Yong
    Wang, Zhiyu
    Liu, Junle
    Chen, An
    Cao, Yijia
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2025, 165
  • [24] An Intermittent High-impedance Fault Identification Method Based on Transient Power Direction Detection and Intermittency Detection
    Xu, Feng
    Huang, Wentao
    Zhou, Lanbo
    Tai, Nengling
    Wen, Juan
    Cao, Liangliang
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [25] A Novel High-Impedance Fault Detection Technique in Smart Active Distribution Systems
    Dubey, Kartika
    Jena, Premalata
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (05) : 4861 - 4872
  • [26] A protection scheme based on impedance for LV and MV lines in microgrids with high-impedance fault detection capability
    Nobakhti, Seyyed Mohammad
    Ketabi, Abbas
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [27] High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers
    Veerasamy, Veerapandiyan
    Wahab, Noor Izzri Abdul
    Ramachandran, Rajeswari
    Thirumeni, Mariammal
    Subramanian, Chitra
    Othman, Mohammad Lutfi
    Hizam, Hashim
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12) : 9127 - 9143
  • [28] A Technique for High-Impedance Grounding Fault Detection Based on Wavelet Transform
    Yan, Guangtai
    Ha, Hengxu
    Hu, Xitong
    2012 INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES 2012), 2012, 13 : 275 - 279
  • [29] Detection Method of High Impedance Fault in Distribution Network Based on Multi-resolution Wavelet Transform
    Liu K.
    Ye X.
    Li Z.
    Tan Y.
    Li B.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (10): : 4247 - 4256
  • [30] High-impedance fault detection in power distribution grid systems based on support vector machine approach
    Ali Ahmadi
    Ebrahim Aghajari
    Mehdi Zangeneh
    Electrical Engineering, 2022, 104 : 3659 - 3672