CDDnet: Cross-domain denoising network for low-dose CT image via local and global information alignment

被引:11
作者
Huang, Jiaxin [1 ]
Chen, Kecheng [2 ]
Ren, Yazhou [1 ,3 ]
Sun, Jiayu [4 ]
Wang, Yanmei [5 ]
Tao, Tao
Pu, Xiaorong [1 ,3 ,6 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China
[3] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China
[4] Sichuan Univ, West China Hosp, Chengdu 610044, Peoples R China
[5] Sichuan Second Hosp TCM, Inst Tradit Chinese Med, Sichuan Coll Tradit Chinese Med, Chengdu 610075, Peoples R China
[6] Mianyang Cent Hosp, NHC Key Lab Nucl Technol Med Transformat, Mianyang 621000, Peoples R China
关键词
Low-dose CT image; Image denoising; Domain adaptation; Deep learning; CNN;
D O I
10.1016/j.compbiomed.2023.107219
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The domain shift problem has emerged as a challenge in cross-domain low-dose CT (LDCT) image denoising task, where the acquisition of a sufficient number of medical images from multiple sources may be constrained by privacy concerns. In this study, we propose a novel cross-domain denoising network (CDDnet) that incorporates both local and global information of CT images. To address the local component, a local information alignment module has been proposed to regularize the similarity between extracted target and source features from selected patches. To align the general information of the semantic structure from a global perspective, an autoencoder is adopted to learn the latent correlation between the source label and the estimated target label generated by the pre-trained denoiser. Experimental results demonstrate that our proposed CDDnet effectively alleviates the domain shift problem, outperforming other deep learning-based and domain adaptation-based methods under cross-domain scenarios.
引用
收藏
页数:9
相关论文
共 56 条
[1]  
[Anonymous], 2014, REGISTRATION RECOGNI
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]  
Chen C, 2019, AAAI CONF ARTIF INTE, P865
[4]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[5]   Lesion-Inspired Denoising Network: Connecting Medical Image Denoising and Lesion Detection [J].
Chen, Kecheng ;
Long, Kun ;
Ren, Yazhou ;
Sun, Jiayu ;
Pu, Xiaorong .
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, :3283-3292
[6]   CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [J].
Chen, Yun-Chun ;
Lin, Yen-Yu ;
Yang, Ming-Hsuan ;
Huang, Jia-Bin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1791-1800
[7]   Learning a similarity metric discriminatively, with application to face verification [J].
Chopra, S ;
Hadsell, R ;
LeCun, Y .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :539-546
[8]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[9]   Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007 [J].
de Gonzalez, Amy Berrington ;
Mahesh, Mahadevappa ;
Kim, Kwang-Pyo ;
Bhargavan, Mythreyi ;
Lewis, Rebecca ;
Mettler, Fred ;
Land, Charles .
ARCHIVES OF INTERNAL MEDICINE, 2009, 169 (22) :2071-2077
[10]   Conditional Invertible Neural Networks for Medical Imaging [J].
Denker, Alexander ;
Schmidt, Maximilian ;
Leuschner, Johannes ;
Maass, Peter .
JOURNAL OF IMAGING, 2021, 7 (11)