Approximation results for Beta Jakimovski-Leviatan type operators via q-analogue

被引:7
作者
Nasiruzzaman, Md. [1 ]
Tom, Mohammed A. O. [1 ]
Serra-Capizzano, Stefano [2 ,3 ]
Rao, Nadeem [4 ]
Ayman-Mursaleen, Mohammad [5 ]
机构
[1] Univ Tabuk, Fac Sci, Dept Math, POB 4279, Tabuk 71491, Saudi Arabia
[2] Univ Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy
[3] Uppsala Univ, Dept Informat Technol, Div Sci Comp, Gerhyddsv 2,Hus 2,POB 337, SE-75105 Uppsala, Sweden
[4] Chandigarh Univ, Univ Ctr Res & Developement, Dept Math, Mohali 140413, Punjab, India
[5] Univ Newcastle, Sch Informat & Phys Sci, Univ Dr, Callaghan, NSW 2308, Australia
关键词
Appell polynomials; q-Appellpolynomials; Jakimovski-Leviatan operators; Korovkin's theorem; modulus of continuity; BERNSTEIN OPERATORS; CONVERGENCE; SEQUENCES; KOROVKIN;
D O I
10.2298/FIL2324389N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a new version of q-Jakimovski-Leviatan type integral operators and show that set of all continuous functions f defined on [0, & INFIN;) are uniformly approximated by our new operators. Finally we construct the Stancu type operators and obtain approximation properties in weighted spaces. Moreover, with the aid of modulus of continuity we discuss the rate of convergence, Lipschitz type maximal approximation and some direct theorems.
引用
收藏
页码:8389 / 8404
页数:16
相关论文
共 45 条
  • [1] APPROXIMATION OF FUNCTIONS BY GENUINE BERNSTEIN-DURRMEYER TYPE OPERATORS
    Acar, Tuncer
    Acu, Ana Maria
    Manav, Nesibe
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 975 - 987
  • [2] STANCU TYPE (p, q)-SZASZ-MIRAKYAN-BASKAKOV OPERATORS
    Acar, Tuncer
    Mursaleen, Mohammad
    Mohiuddine, S. A.
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2018, 67 (01): : 116 - 128
  • [3] (p,q)-Generalization of Szasz-Mirakyan operators
    Acar, Tuncer
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) : 2685 - 2695
  • [4] On Pointwise Convergence of q-Bernstein Operators and Their q-Derivatives
    Acar, Tuncer
    Aral, Ali
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (03) : 287 - 304
  • [5] Szasz Type Operators Involving Charlier Polynomials and Approximation Properties
    Al-Abied, A. A. H.
    Mursaleen, M. Ayman
    Mursaleen, M.
    [J]. FILOMAT, 2021, 35 (15) : 5149 - 5159
  • [6] Al-Salam W.A., 1967, Ann. Mat. Pura. Appl, V4, P31, DOI DOI 10.1007/BF02416939
  • [7] On the Approximation by Bivariate Szasz-Jakimovski-Leviatan-Type Operators of Unbounded Sequences of Positive Numbers
    Alotaibi, Abdullah
    [J]. MATHEMATICS, 2023, 11 (04)
  • [8] Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bogel Space
    Alotaibi, Abdullah
    [J]. MATHEMATICS, 2022, 10 (05)
  • [9] Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus
    Alotaibi, Abdullah
    Mursaleen, M.
    [J]. AIMS MATHEMATICS, 2020, 5 (04): : 3019 - 3034
  • [10] Ansari KJ, 2022, COMPUT APPL MATH, V41, DOI 10.1007/s40314-022-01877-4