EXISTENCE ANALYSIS FOR A REACTION-DIFFUSION CAHN-HILLIARD-TYPE SYSTEM WITH DEGENERATE MOBILITY AND SINGULAR POTENTIAL MODELING BIOFILM GROWTH

被引:0
作者
Helmer, Christoph [1 ]
Juengel, Ansgar [1 ]
机构
[1] Tech Univ Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
Biofilms; reaction-diffusion equation; Cahn-Hilliard equation; degen-erate mobility; singular potential; existence of solutions; logarithmic free energy; PHASE-FIELD MODELS; EQUATION; FLOW;
D O I
10.3934/dcds.2023069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. The global existence of bounded weak solutions to a diffusion system modeling biofilm growth is proven. The equations consist of a reactiondiffusion equation for the substrate concentration and a fourth-order Cahn- Hilliard-type equation for the volume fraction of the biomass, considered in a bounded domain with no-flux boundary conditions. The main difficulties are coming from the degenerate diffusivity and mobility, the singular potential arising from a logarithmic free energy, and the nonlinear reaction rates. These issues are overcome by a truncation technique and a Browder-Minty trick to identify the weak limits of the reaction terms. The qualitative behavior of the solutions is illustrated by numerical experiments in one space dimension, using a BDF2 (second-order backward Differentiation Formula) finite-volume scheme.
引用
收藏
页码:3839 / 3861
页数:23
相关论文
共 30 条
[1]   ASYMPTOTICS FOR A GENERALIZED CAHN-HILLIARD EQUATION WITH FORCING TERMS [J].
Antonopoulou, Dimitra C. ;
Karali, Georgia D. ;
Kossioris, Georgios T. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (04) :1037-1054
[2]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[3]   ON A GENERALIZED CAHN-HILLIARD EQUATION WITH BIOLOGICAL APPLICATIONS [J].
Cherfils, Laurence ;
Miranville, Alain ;
Zelik, Sergey .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (07) :2013-2026
[4]   The role of the biofilm matrix in structural development [J].
Cogan, NG ;
Keener, JP .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2004, 21 (02) :147-166
[5]   Free boundary approach for the attachment in the initial phase of multispecies biofilm growth [J].
D'Acunto, B. ;
Frunzo, L. ;
Luongo, V. ;
Mattei, M. R. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (03)
[6]   Qualitative analysis and simulations of a free boundary problem for multispecies biofilm models [J].
D'Acunto, Berardino ;
Frunzo, Luigi .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) :1596-1606
[7]   Convergence of a finite-volume scheme for a degenerate-singular cross-diffusion system for biofilms [J].
Daus, Esther S. ;
Juengel, Ansgar ;
Zurek, Antoine .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) :935-973
[8]  
Ebenbeck M., 2020, THESIS U REGENSBURG
[9]   CAHN-HILLIARD-BRINKMAN SYSTEMS FOR TUMOUR GROWTH [J].
Ebenbeck, Matthias ;
Garcke, Harald ;
Nurnberg, Robert .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (11) :3989-4033
[10]  
Eberl H. J., 2001, J. Theor. Med., V3, P161, DOI DOI 10.1080/10273660108833072