Normalized solutions to a Schrodinger-Bopp-Podolsky system under Neumann boundary conditions

被引:14
作者
Afonso, Danilo G. G. [1 ]
Siciliano, Gaetano [2 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Sao Paulo, Inst Matemat & Estat, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Schrodinger-Bopp-Podolsky system; Krasnoselskii genus; Lagrange multipliers; weak solutions; ELECTRODYNAMICS; EQUATION;
D O I
10.1142/S0219199721501005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a Schrodinger-Bopp-Podolsky (SBP) system of partial differential equations in a bounded and smooth domain of Double-struck capital R-3 with a nonconstant coupling factor. Under a compatibility condition on the boundary data we deduce existence of solutions by means of the Ljusternik-Schnirelmann theory.
引用
收藏
页数:20
相关论文
共 14 条
[1]  
Afonso D. G., 2020, THESIS
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]   On the critical Schrodinger-Bopp-Podolsky system with general nonlinearities [J].
Chen, Sitong ;
Tang, Xianhua .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
[4]   Nonlinear Schrodinger equation in the Bopp-Podolsky electrodynamics: Solutions in the electrostatic case [J].
D'Avenia, Pietro ;
Siciliano, Gaetano .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (02) :1025-1065
[5]  
Fortunato D., 1998, Journal of Juliusz Schauder Center, V11, P283, DOI 10.12775/TMNA.1998.019
[6]   Models of Higher Order [J].
Gazzola, Filippo ;
Grunau, Hans-Christoph ;
Sweers, Guido .
POLYHARMONIC BOUNDARY VALUE PROBLEMS: POSITIVITY PRESERVING AND NONLINEAR HIGHER ORDER ELLIPTIC EQUATIONS IN BOUNDED DOMAINS, 2010, 1991 :1-+
[7]   ELECTRO-MAGNETO-STATIC STUDY OF THE NONLINEAR SCHRODINGER EQUATION COUPLED WITH BOPP-PODOLSKY ELECTRODYNAMICS IN THE PROCA SETTING [J].
Hebey, Emmanuel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) :6683-6712
[8]   Ground State Solutions for the Nonlinear Schrodinger-Bopp-Podolsky System with Critical Sobolev Exponent [J].
Li, Lin ;
Pucci, Patrizia ;
Tang, Xianhua .
ADVANCED NONLINEAR STUDIES, 2020, 20 (03) :511-538
[9]  
Figueiredo GM, 2020, Arxiv, DOI arXiv:2006.12637
[10]  
Mascaro B, 2020, Arxiv, DOI arXiv:2009.08531