SLAM and 3D Semantic Reconstruction Based on the Fusion of Lidar and Monocular Vision

被引:20
作者
Lou, Lu [1 ]
Li, Yitian [1 ]
Zhang, Qi [2 ]
Wei, Hanbing [3 ]
机构
[1] Chongqing Jiaotong Univ, Sch Informat Sci & Engn, Chongqing 400074, Peoples R China
[2] Guangdong Haoxing Technol Co Ltd, Foshan 528300, Peoples R China
[3] Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, Chongqing 400074, Peoples R China
基金
中国国家自然科学基金;
关键词
SLAM (simultaneous localization and mapping); multi-sensor fusion; monocular vision; Lidar; 3D reconstruction; VERSATILE; TRACKING; ROBUST;
D O I
10.3390/s23031502
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Monocular camera and Lidar are the two most commonly used sensors in unmanned vehicles. Combining the advantages of the two is the current research focus of SLAM and semantic analysis. In this paper, we propose an improved SLAM and semantic reconstruction method based on the fusion of Lidar and monocular vision. We fuse the semantic image with the low-resolution 3D Lidar point clouds and generate dense semantic depth maps. Through visual odometry, ORB feature points with depth information are selected to improve positioning accuracy. Our method uses parallel threads to aggregate 3D semantic point clouds while positioning the unmanned vehicle. Experiments are conducted on the public CityScapes and KITTI Visual Odometry datasets, and the results show that compared with the ORB-SLAM2 and DynaSLAM, our positioning error is approximately reduced by 87%; compared with the DEMO and DVL-SLAM, our positioning accuracy improves in most sequences. Our 3D reconstruction quality is better than DynSLAM and contains semantic information. The proposed method has engineering application value in the unmanned vehicles field.
引用
收藏
页数:19
相关论文
共 36 条
  • [1] Bârsan IA, 2018, IEEE INT CONF ROBOT, P7510
  • [2] DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes
    Bescos, Berta
    Facil, Jose M.
    Civera, Javier
    Neira, Jose
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04): : 4076 - 4083
  • [3] ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM
    Campos, Carlos
    Elvira, Richard
    Gomez Rodriguez, Juan J.
    Montiel, Jose M. M.
    Tardos, Juan D.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) : 1874 - 1890
  • [4] Chen XYL, 2019, IEEE INT C INT ROBOT, P4530, DOI 10.1109/IROS40897.2019.8967704
  • [5] Cignoni P., 2008, MESHLAB OPEN SOURCE, DOI [10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136, DOI 10.2312/LOCALCHAPTEREVENTS/ITALCHAP/ITALIANCHAPCONF2008/129-136]
  • [6] The Cityscapes Dataset for Semantic Urban Scene Understanding
    Cordts, Marius
    Omran, Mohamed
    Ramos, Sebastian
    Rehfeld, Timo
    Enzweiler, Markus
    Benenson, Rodrigo
    Franke, Uwe
    Roth, Stefan
    Schiele, Bernt
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3213 - 3223
  • [7] SDF-SLAM: Semantic Depth Filter SLAM for Dynamic Environments
    Cui, Linyan
    Ma, Chaowei
    [J]. IEEE ACCESS, 2020, 8 (08): : 95301 - 95311
  • [8] Large-Scale LiDAR SLAM with Factor Graph Optimization on High-Level Geometric Features
    Cwian, Krzysztof
    Nowicki, Michal R.
    Wietrzykowski, Jan
    Skrzypczynski, Piotr
    [J]. SENSORS, 2021, 21 (10)
  • [9] MonoSLAM: Real-time single camera SLAM
    Davison, Andrew J.
    Reid, Ian D.
    Molton, Nicholas D.
    Stasse, Olivier
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (06) : 1052 - 1067
  • [10] Robust Fusion of LiDAR and Wide-Angle Camera Data for Autonomous Mobile Robots
    De Silva, Varuna
    Roche, Jamie
    Kondoz, Ahmet
    [J]. SENSORS, 2018, 18 (08)