Physical Processes in the Pirani Type Low Vacuum Sensor

被引:0
作者
Rut'kov, E. V. [1 ]
Beliaeva, O. A. [2 ]
Gall, N. R. [1 ]
机构
[1] Ioffe Inst, St Petersburg 194021, Russia
[2] LLC TECHNAN, St Petersburg 199155, Russia
关键词
vacuum; adsorption; Pirani sensor; molybdenum; thermal desorption; nitrogen; GLASS;
D O I
10.1134/S1063784223080327
中图分类号
O59 [应用物理学];
学科分类号
摘要
Auger electron spectroscopy and thermoresistive methods are used to study the physical processes leading to gas cooling of heated molybdenum filaments in a wide temperature range of 350-1300 K and pressures of 760-10(-3) Torr, corresponding to the operating range of a Pirani-type vacuum sensor. Nitrogen was used as the gas. It is shown that nitrogen atoms chemisorbed on the surface do not contribute to gas cooling, which occurs only due to physisorbed N-2 molecules. In the intermediate vacuum region of 10(-3)-1 Torr, the heater is cooled due to the equilibrium between the flux of incident and thermally desorbed molecules, which is well described by the Hertz-Knudsen formula and first-order desorption with an activation energy of similar to 0.55 eV On the contrary, at high pressures close to atmospheric, this cooling occurs due to the thermal desorption of gas molecules from an almost filled monolayer, which reduces its relative efficiency by many orders of magnitude.
引用
收藏
页码:766 / 770
页数:5
相关论文
共 50 条
[31]   Vacuum Steered-Electron Electric-Field Sensor [J].
Williams, Kirt R. ;
De Bruyker, Dirk P. H. ;
Limb, Scott J. ;
Amendt, Eric M. ;
Overland, Doug A. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2014, 23 (01) :157-167
[32]   Mercury Vapor Sensor for Alumina Refinery Processes [J].
Sabri, Ylias M. ;
Ippolito, Samuel J. ;
Bhargava, Suresh .
LIGHT METALS 2009, 2009, :37-42
[33]   PHYSICAL PROPERTIES OF VACUUM EVAPORATED TIN SULFIDE THIN FILMS [J].
Cruz, J. S. ;
Leyva, K. Monfil ;
Mathews, N. R. ;
Galvan, A. Mendoza ;
Mathew, X. .
CHALCOGENIDE LETTERS, 2015, 12 (08) :415-427
[34]   Physical and thermal properties of potato chips during vacuum frying [J].
Yagua, Carla V. ;
Moreira, Rosana G. .
JOURNAL OF FOOD ENGINEERING, 2011, 104 (02) :272-283
[35]   Investigation of Processes on the Surface and in the Bulk of Magnetron Materials under Thermal and Thermoacoustic Treatment during Vacuum Pumping of the Air Atmosphere [J].
Khanbekov, I. F. ;
Petrov, V. S. ;
Li, I. P. ;
Polunina, A. A. ;
Loktev, D. N. .
INORGANIC MATERIALS-APPLIED RESEARCH, 2021, 12 (03) :680-685
[36]   Investigation of Processes on the Surface and in the Bulk of Magnetron Materials under Thermal and Thermoacoustic Treatment during Vacuum Pumping of the Air Atmosphere [J].
I. F. Khanbekov ;
V. S. Petrov ;
I. P. Li ;
A. A. Polunina ;
D. N. Loktev .
Inorganic Materials: Applied Research, 2021, 12 :680-685
[37]   Vacuum behavior and control of a MEMS stage with integrated thermal displacement sensor [J].
Krijnen, B. ;
Brouwer, D. M. ;
Abelmann, L. ;
Herder, J. L. .
SENSORS AND ACTUATORS A-PHYSICAL, 2015, 234 :321-330
[38]   Methane recovery from low-grade unconventional natural gas by the integrated mode of the conventional/improved vacuum pressure swing adsorption processes [J].
Qian, Zhiling ;
Zhou, Yiwei ;
Yang, Ying ;
Li, Ping .
FUEL, 2023, 331
[39]   A drift chamber with a new type of straws for operation in vacuum [J].
Azorskiy, N. ;
Glonti, L. ;
Gusakov, Yu. ;
Elsha, V. ;
Enik, T. ;
Kakurin, S. ;
Kekelidze, V. ;
Kislov, E. ;
Kolesnikov, A. ;
Madigozhin, D. ;
Movchan, S. ;
Polenkevich, I. ;
Potrebenikov, Yu. ;
Samsonov, V. ;
Shkarovskiy, S. ;
Sotnikov, S. ;
Zinchenko, A. ;
Danielsson, H. ;
Bendotti, J. ;
Degrange, J. ;
Dixon, N. ;
Lichard, P. ;
Morant, J. ;
Palladino, V. ;
Gomez, F. Perez ;
Ruggiero, G. ;
Vergain, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 824 :569-570
[40]   Effect of vacuum impregnation on physical changes during table olive processing [J].
Romero, C. ;
Garcia-Garcia, P. ;
Sanchez, A. H. ;
Brenes, M. .
GRASAS Y ACEITES, 2022, 73 (04)