Preliminary thermal and structural analyses on the parabolic mirror of the Multi-Beam Transmission Line of the DTT ECH system

被引:3
作者
Salvitti, A. [1 ]
Bruschi, A. [2 ]
Calabro, G. [1 ]
Fanale, F. [3 ,4 ]
Fanelli, P. [1 ]
Garavaglia, S. [2 ]
Giorgetti, F. [3 ,4 ]
Granucci, G. [2 ]
Moro, A. [2 ]
Platania, P. [2 ]
Romano, A. [3 ,4 ]
机构
[1] Univ Tuscia, Dept Econ Engn Soc & Business DEIM, Viterbo, Italy
[2] Technol Natl Res Council Italy, Inst Plasma Sci, Milan, Italy
[3] CR Frascati, ENEA, Fus & Nucl Safety Dept, Via E Fermi 45, I-00044 Frascati, RM, Italy
[4] DTT SCarl, Via E Fermi 45, I-00044 Frascati, RM, Italy
关键词
DTT; ECH; MBTL; Mirror; Thermo -structural analysis; Deformation; CONCEPTUAL DESIGN; ECRH; LOSSES; W7-X;
D O I
10.1016/j.fusengdes.2023.114106
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Italian tokamak DTT (Divertor Tokamak Test) is a facility for research on nuclear fusion with the aim of investigating alternative power exhaust solutions to be exploited in the future DEMO fusion power plant. DTT foresees three additional heating systems to provide the plasma with sufficient power: Electron Cyclotron Heating (ECH) is the main one, with up to 32 MW installed. It consists of 4 clusters, each one composed of eight radio-frequency sources (gyrotrons) with their single-beam transmission lines, one quasi-optical Multi-Beam Transmission Line (MBTL) and eight independent launchers. The power produced by the source is transmitted quasi-optically through multiple reflections on metallic mirrors, the basic component of the transmission line, and then injected into the plasma. In the MBTL the reflection of the eight microwave beams on the mirror surface leads to heating of its whole structure due to the absorbed fraction of the beam power (0.21-0.27 %) ascribed to the ohmic heating at the mirror surface. During the radio-frequency power pulse (100 s), the mirror temperature increases, generating deformations that could result in a loss of beam transmission efficiency. For this reason, these mirrors need to be carefully designed from thermal and structural points of view, to guarantee the required optical performances. In the present paper, a preliminary study concerning the design of the MBTL parabolic mirror, and its cooling is presented, resorting to a coupled thermal and structural finite element simulation. The preliminary analyses address a main objective: minimize the surface mirror temperatures and consequently the deformation associated with thermal expansion, to reduce the impact on beam transmission efficiency drop. Different design choices, namely materials, body thickness and cooling solutions, in terms of cooling channel shape and water flow, are discussed.
引用
收藏
页数:12
相关论文
共 17 条
[1]   Conceptual design of a neutral beam heating & current drive system for DTT [J].
Agostinetti, P. ;
Bolzonella, T. ;
Gobbin, M. ;
Sonato, P. ;
Spizzo, G. ;
Vallar, M. ;
Vincenzi, P. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :441-446
[2]  
[Anonymous], 2023, DTT divertor tokamak test facility interim report
[3]  
ANSYS Inc, 2017, Mechanical User's Guide, Release 18.2
[4]   Conceptual design of the DTT ECRH quasi-optical transmission line [J].
Bruschi, A. ;
Allio, A. ;
Fanale, F. ;
Fanelli, P. ;
Garavaglia, S. ;
Giorgetti, F. ;
Granucci, G. ;
Moro, A. ;
Platania, P. ;
Romano, A. ;
Salvitti, A. ;
Savoldi, L. ;
Schmuck, S. ;
Simonetto, A. .
FUSION ENGINEERING AND DESIGN, 2023, 194
[5]   Conceptual definition of an ICRF system for the Italian DTT [J].
Ceccuzzi, S. ;
Cardinali, A. ;
Castaldo, C. ;
Granucci, G. ;
Loschiavo, V. P. ;
Maggiora, R. ;
Milanesio, D. ;
Mirizzi, F. ;
Ravera, G. L. ;
Tuccillo, A. A. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :361-364
[6]   Analysis of a multiple-beam waveguide for free-space transmission of microwaves [J].
Empacher, L ;
Kasparek, W .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (03) :483-493
[7]   Electron cyclotron heating for W7-X: Physics and technology [J].
Erckmann, V. ;
Brand, P. ;
Braune, H. ;
Dammertz, G. ;
Gantenbein, G. ;
Kasparek, W. ;
Laqua, H. P. ;
Maassberg, H. ;
Marushchenko, N. B. ;
Michel, G. ;
Thumm, M. ;
Turkin, Y. ;
Weissgerber, M. ;
Weller, A. .
FUSION SCIENCE AND TECHNOLOGY, 2007, 52 (02) :291-312
[8]   ECRH FOR W7-X: TRANSMISSION LOSSES OF HIGH-POWER 140-GHz WAVE BEAMS [J].
Erckmann, V. ;
Kasparek, W. ;
Gantenbein, G. ;
Hollmann, F. ;
Jonitz, L. ;
Noke, F. ;
Purps, F. ;
Weissgerber, M. .
FUSION SCIENCE AND TECHNOLOGY, 2009, 55 (01) :16-22
[9]   Overview of the DEMO staged design approach in Europe [J].
Federici, G. ;
Bachmann, C. ;
Barucca, L. ;
Baylard, C. ;
Biel, W. ;
Boccaccini, L., V ;
Bustreo, C. ;
Ciattaglia, S. ;
Cismondi, F. ;
Corator, V ;
Day, C. ;
Diegele, E. ;
Franke, T. ;
Gaio, E. ;
Gliss, C. ;
Haertl, T. ;
Ibarra, A. ;
Holden, J. ;
Keech, G. ;
Kembleton, R. ;
Loving, A. ;
Maviglial, F. ;
Morris, J. ;
Meszaros, B. ;
Moscato, I ;
Pintsuk, G. ;
Sicciniol, M. ;
Taylor, N. ;
Tran, M. Q. ;
Vorpahl, C. ;
Walden, H. ;
You, J. H. .
NUCLEAR FUSION, 2019, 59 (06)
[10]   Progress of DTT ECRH system design [J].
Garavaglia, S. ;
Baiocchi, B. ;
Bruschi, A. ;
Busi, D. ;
Fanale, F. ;
Figini, L. ;
Granucci, G. ;
Moro, A. ;
Platania, P. ;
Rispoli, N. ;
Romano, A. ;
Salvitti, A. ;
Sartori, E. ;
Schmuck, S. ;
Vassallo, E. .
FUSION ENGINEERING AND DESIGN, 2021, 168