Automated characterization of patient-ventilator interaction using surface electromyography

被引:3
作者
Sauer, Julia [1 ]
Grasshoff, Jan [1 ,2 ]
Carbon, Niklas M. [3 ,4 ,5 ,6 ]
Koch, Willi M. [3 ,4 ,5 ]
Weber-Carstens, Steffen [3 ,4 ,5 ]
Rostalski, Philipp [1 ,2 ]
机构
[1] Univ Lubeck, Inst Elect Engn Med, Ratzeburger Allee 160, D-23562 Lubeck, Germany
[2] Fraunhofer Res Inst Individualized & Cell Based M, Fraunhofer IMTE, Lubeck, Germany
[3] Charite Univ Med Berlin, Dept Anesthesiol & Intens Care Med, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] Humboldt Univ, Berlin, Germany
[6] Friedrich Alexander Univ Erlangen Nurnberg, Uniklin Erlangen, Dept Anesthesiol, Erlangen, Germany
关键词
Mechanical ventilation; Patient-ventilator asynchrony; Automation; Surface electromyography; Esophageal pressure; NEURAL INSPIRATORY TIME; NONINVASIVE VENTILATION; MECHANICAL VENTILATION; ASYNCHRONY; AGREEMENT; ONSET;
D O I
10.1186/s13613-024-01259-5
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BackgroundCharacterizing patient-ventilator interaction in critically ill patients is time-consuming and requires trained staff to evaluate the behavior of the ventilated patient.MethodsIn this study, we recorded surface electromyography (sEMG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{sEMG}$$\end{document}) signals from the diaphragm and intercostal muscles and esophageal pressure (Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}) in mechanically ventilated patients with ARDS. The sEMG recordings were preprocessed, and two different algorithms (triangle algorithm and adaptive thresholding algorithm) were used to automatically detect inspiratory patient effort. Based on the detected inspirations, major asynchronies (ineffective, auto-, and double triggers and double efforts), delayed and synchronous triggers were computationally classified. Reverse triggers were not considered in this study. Subsequently, asynchrony indices were calculated. For the validation of detected efforts, two experts manually annotated inspiratory patient activity in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}, blinded toward each other, the sEMG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{sEMG}$$\end{document} signals, and the algorithmic results. We also classified patient-ventilator interaction and calculated asynchrony indices with manually detected inspirations in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} as a reference for automated asynchrony classification and asynchrony index calculation.ResultsSpontaneous breathing activity was recognized in 22 out of the 36 patients included in the study. Evaluation of the accuracy of the algorithms using 3057 inspiratory efforts in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} demonstrated reliable detection performance for both methods. Across all datasets, we found a high sensitivity (triangle algorithm/adaptive thresholding algorithm: 0.93/0.97) and a high positive predictive value (0.94/0.89) against expert annotations in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}. The average delay of automatically detected inspiratory onset to the Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} reference was -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}79 ms/29 ms for the two algorithms. Our findings also indicate that automatic asynchrony index prediction is reliable. For both algorithms, we found the same deviation of 0.06 +/- 0.13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.06\pm 0.13$$\end{document} to the Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}-based reference.ConclusionsOur study demonstrates the feasibility of automating the quantification of patient-ventilator asynchrony in critically ill patients using noninvasive sEMG. This may facilitate more frequent diagnosis of asynchrony and support improving patient-ventilator interaction.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Patient-Ventilator Interaction With Noninvasive Proportional Assist Ventilation in Subjects With COPD [J].
Zhang, Jianheng ;
Luo, Qun ;
Chen, Rongchang .
RESPIRATORY CARE, 2020, 65 (01) :45-52
[42]   Mechanical ventilation strategy for pulmonary rehabilitation based on patient-ventilator interaction [J].
Hao, LiMing ;
Li, Xiao ;
Shi, Yan ;
Cai, MaoLin ;
Ren, Shuai ;
Xie, Fei ;
Li, YaNa ;
Wang, Na ;
Wang, YiXuan ;
Luo, ZuJin ;
Xu, Meng .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (04) :869-878
[43]   Mechanical ventilation strategy for pulmonary rehabilitation based on patient-ventilator interaction [J].
LiMing Hao ;
Xiao Li ;
Yan Shi ;
MaoLin Cai ;
Shuai Ren ;
Fei Xie ;
YaNa Li ;
Na Wang ;
YiXuan Wang ;
ZuJin Luo ;
Meng Xu .
Science China Technological Sciences, 2021, 64 :869-878
[44]   Automatic patient-ventilator asynchrony detection framework using objective asynchrony definitions [J].
Kamp, Lars van de ;
Reinders, Joey ;
Hunnekens, Bram ;
Oomen, Tom ;
Wouw, Nathan van de .
IFAC JOURNAL OF SYSTEMS AND CONTROL, 2024, 27
[45]   Patient-ventilator asynchrony in adult critically ill patients [J].
Bruni, Andrea ;
Garofalo, Eugenio ;
Pelaia, Corrado ;
Messina, Antonio ;
Cammarota, Gianmaria ;
Murabito, Paolo ;
Corrado, Silvia ;
Vetrugno, Luigi ;
Longhini, Federico ;
Navalesi, Paolo .
MINERVA ANESTESIOLOGICA, 2019, 85 (06) :676-688
[46]   Patient-Ventilator Synchronization During Non-invasive Ventilation: A Pilot Study of an Automated Analysis System [J].
Letellier, Christophe ;
Lujan, Manel ;
Arnal, Jean-Michel ;
Carlucci, Annalisa ;
Chatwin, Michelle ;
Ergan, Begum ;
Kampelmacher, Mike ;
Storre, Jan Hendrik ;
Hart, Nicholas ;
Gonzalez-Bermejo, Jesus ;
Nava, Stefano .
FRONTIERS IN MEDICAL TECHNOLOGY, 2021, 3
[47]   Patient-Ventilator Asynchrony During Assisted Ventilation in Children [J].
Blokpoel, Robert G. T. ;
Burgerhof, Johannes G. M. ;
Markhorst, Dick G. ;
Kneyber, Martin C. J. .
PEDIATRIC CRITICAL CARE MEDICINE, 2016, 17 (05) :E204-E211
[48]   Transcutaneous electromyographic respiratory muscle recordings to quantify patient-ventilator interaction in mechanically ventilated children [J].
Koopman, Alette A. ;
Blokpoel, Robert G. T. ;
van Eykern, Leo A. ;
de Jongh, Frans H. C. ;
Burgerhof, Johannes G. M. ;
Kneyber, Martin C. J. .
ANNALS OF INTENSIVE CARE, 2018, 8
[49]   Identifying and managing patient-ventilator asynchrony: An international survey [J].
Ramirez, I. I. ;
Adasme, R. S. ;
Arellano, D. H. ;
Rocha, A. R. M. ;
Andrade, F. M. D. ;
Nunez-Silveira, J. ;
Montecinos, N. A. ;
Dias, S. ;
Damiani, L. F. ;
Gutierrez-Arias, R. ;
Lobo-Valbuena, B. ;
Gordo-Vidal, F. .
MEDICINA INTENSIVA, 2021, 45 (03) :138-146
[50]   Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation [J].
Alexopoulou, C. ;
Kondili, E. ;
Plataki, M. ;
Georgopoulos, D. .
INTENSIVE CARE MEDICINE, 2013, 39 (06) :1040-1047