Automated characterization of patient-ventilator interaction using surface electromyography

被引:3
作者
Sauer, Julia [1 ]
Grasshoff, Jan [1 ,2 ]
Carbon, Niklas M. [3 ,4 ,5 ,6 ]
Koch, Willi M. [3 ,4 ,5 ]
Weber-Carstens, Steffen [3 ,4 ,5 ]
Rostalski, Philipp [1 ,2 ]
机构
[1] Univ Lubeck, Inst Elect Engn Med, Ratzeburger Allee 160, D-23562 Lubeck, Germany
[2] Fraunhofer Res Inst Individualized & Cell Based M, Fraunhofer IMTE, Lubeck, Germany
[3] Charite Univ Med Berlin, Dept Anesthesiol & Intens Care Med, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] Humboldt Univ, Berlin, Germany
[6] Friedrich Alexander Univ Erlangen Nurnberg, Uniklin Erlangen, Dept Anesthesiol, Erlangen, Germany
关键词
Mechanical ventilation; Patient-ventilator asynchrony; Automation; Surface electromyography; Esophageal pressure; NEURAL INSPIRATORY TIME; NONINVASIVE VENTILATION; MECHANICAL VENTILATION; ASYNCHRONY; AGREEMENT; ONSET;
D O I
10.1186/s13613-024-01259-5
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BackgroundCharacterizing patient-ventilator interaction in critically ill patients is time-consuming and requires trained staff to evaluate the behavior of the ventilated patient.MethodsIn this study, we recorded surface electromyography (sEMG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{sEMG}$$\end{document}) signals from the diaphragm and intercostal muscles and esophageal pressure (Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}) in mechanically ventilated patients with ARDS. The sEMG recordings were preprocessed, and two different algorithms (triangle algorithm and adaptive thresholding algorithm) were used to automatically detect inspiratory patient effort. Based on the detected inspirations, major asynchronies (ineffective, auto-, and double triggers and double efforts), delayed and synchronous triggers were computationally classified. Reverse triggers were not considered in this study. Subsequently, asynchrony indices were calculated. For the validation of detected efforts, two experts manually annotated inspiratory patient activity in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}, blinded toward each other, the sEMG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{sEMG}$$\end{document} signals, and the algorithmic results. We also classified patient-ventilator interaction and calculated asynchrony indices with manually detected inspirations in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} as a reference for automated asynchrony classification and asynchrony index calculation.ResultsSpontaneous breathing activity was recognized in 22 out of the 36 patients included in the study. Evaluation of the accuracy of the algorithms using 3057 inspiratory efforts in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} demonstrated reliable detection performance for both methods. Across all datasets, we found a high sensitivity (triangle algorithm/adaptive thresholding algorithm: 0.93/0.97) and a high positive predictive value (0.94/0.89) against expert annotations in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}. The average delay of automatically detected inspiratory onset to the Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} reference was -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}79 ms/29 ms for the two algorithms. Our findings also indicate that automatic asynchrony index prediction is reliable. For both algorithms, we found the same deviation of 0.06 +/- 0.13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.06\pm 0.13$$\end{document} to the Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}-based reference.ConclusionsOur study demonstrates the feasibility of automating the quantification of patient-ventilator asynchrony in critically ill patients using noninvasive sEMG. This may facilitate more frequent diagnosis of asynchrony and support improving patient-ventilator interaction.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony
    Colombo, Davide
    Cammarota, Gianmaria
    Alemani, Moreno
    Carenzo, Luca
    Barra, Federico Lorenzo
    Vaschetto, Rosanna
    Slutsky, Arthur S.
    Della Corte, Francesco
    Navalesi, Paolo
    CRITICAL CARE MEDICINE, 2011, 39 (11) : 2452 - 2457
  • [32] Patient-Ventilator Asynchrony in Critical Care Settings: National Outcomes of Ventilator Waveform Analysis
    Alqahtani, Jaber S.
    AlAhmari, Mohammed D.
    Alshamrani, Khalid H.
    Alshehri, Abdullah M.
    Althumayri, Mashhour A.
    Ghazwani, Abdullah A.
    AlAmoudi, Asma O.
    Alsomali, Amal
    Alenazi, Meshal H.
    AlZahrani, Yousef R.
    Alqahtani, Abdullah S.
    AlRabeeah, Saad M.
    Arabi, Yaseen M.
    HEART & LUNG, 2020, 49 (05): : 630 - 636
  • [33] Patient-ventilator interaction: A general model for nonpassive mechanical ventilation
    Crooke, PS
    Head, JD
    Marini, JJ
    Hotchkiss, JR
    IMA JOURNAL OF MATHEMATICS APPLIED IN MEDICINE AND BIOLOGY, 1998, 15 (04): : 321 - 337
  • [34] Neurally adjusted ventilatory assist improves patient-ventilator interaction during postextubation prophylactic noninvasive ventilation
    Schmidt, Matthieu
    Dres, Martin
    Raux, Mathieu
    Deslandes-Boutmy, Emmanuelle
    Kindler, Felix
    Mayaux, Julien
    Similowski, Thomas
    Demoule, Alexandre
    CRITICAL CARE MEDICINE, 2012, 40 (06) : 1738 - 1744
  • [35] Optimizing patient-ventilator synchrony
    Epstein, SK
    SEMINARS IN RESPIRATORY AND CRITICAL CARE MEDICINE, 2001, 22 (02) : 137 - 152
  • [36] Patient-Ventilator Dyssynchrony in Critically Ill Patients
    De Oliveira, Bruno
    Aljaberi, Nahla
    Taha, Ahmed
    Abduljawad, Baraa
    Hamed, Fadi
    Rahman, Nadeem
    Mallat, Jihad
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (19)
  • [37] Managing Patient-Ventilator Dyssynchrony
    MacIntyre, Neil
    CRITICAL CARE MEDICINE, 2021, 49 (12) : 2149 - 2151
  • [38] Does patient-ventilator asynchrony really matter?
    Docci, Mattia
    Rodrigues, Antenor
    Dubo, Sebastian
    Ko, Matthew
    Brochard, Laurent
    CURRENT OPINION IN CRITICAL CARE, 2025, 31 (01) : 21 - 29
  • [39] Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist
    Spahija, Jadranka
    de Marchie, Michel
    Albert, Martin
    Bellemare, Patrick
    Delisle, Stephane
    Beck, Jennifer
    Sinderby, Christer
    CRITICAL CARE MEDICINE, 2010, 38 (02) : 518 - 526
  • [40] Patient-Ventilator Asynchrony in a Traumatically Injured Population
    Robinson, Bryce R. H.
    Blakeman, Thomas C.
    Toth, Peter
    Hanseman, Dennis J.
    Mueller, Eric
    Branson, Richard D.
    RESPIRATORY CARE, 2013, 58 (11) : 1847 - 1855