Automated characterization of patient-ventilator interaction using surface electromyography

被引:3
|
作者
Sauer, Julia [1 ]
Grasshoff, Jan [1 ,2 ]
Carbon, Niklas M. [3 ,4 ,5 ,6 ]
Koch, Willi M. [3 ,4 ,5 ]
Weber-Carstens, Steffen [3 ,4 ,5 ]
Rostalski, Philipp [1 ,2 ]
机构
[1] Univ Lubeck, Inst Elect Engn Med, Ratzeburger Allee 160, D-23562 Lubeck, Germany
[2] Fraunhofer Res Inst Individualized & Cell Based M, Fraunhofer IMTE, Lubeck, Germany
[3] Charite Univ Med Berlin, Dept Anesthesiol & Intens Care Med, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] Humboldt Univ, Berlin, Germany
[6] Friedrich Alexander Univ Erlangen Nurnberg, Uniklin Erlangen, Dept Anesthesiol, Erlangen, Germany
关键词
Mechanical ventilation; Patient-ventilator asynchrony; Automation; Surface electromyography; Esophageal pressure; NEURAL INSPIRATORY TIME; NONINVASIVE VENTILATION; MECHANICAL VENTILATION; ASYNCHRONY; AGREEMENT; ONSET;
D O I
10.1186/s13613-024-01259-5
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BackgroundCharacterizing patient-ventilator interaction in critically ill patients is time-consuming and requires trained staff to evaluate the behavior of the ventilated patient.MethodsIn this study, we recorded surface electromyography (sEMG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{sEMG}$$\end{document}) signals from the diaphragm and intercostal muscles and esophageal pressure (Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}) in mechanically ventilated patients with ARDS. The sEMG recordings were preprocessed, and two different algorithms (triangle algorithm and adaptive thresholding algorithm) were used to automatically detect inspiratory patient effort. Based on the detected inspirations, major asynchronies (ineffective, auto-, and double triggers and double efforts), delayed and synchronous triggers were computationally classified. Reverse triggers were not considered in this study. Subsequently, asynchrony indices were calculated. For the validation of detected efforts, two experts manually annotated inspiratory patient activity in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}, blinded toward each other, the sEMG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{sEMG}$$\end{document} signals, and the algorithmic results. We also classified patient-ventilator interaction and calculated asynchrony indices with manually detected inspirations in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} as a reference for automated asynchrony classification and asynchrony index calculation.ResultsSpontaneous breathing activity was recognized in 22 out of the 36 patients included in the study. Evaluation of the accuracy of the algorithms using 3057 inspiratory efforts in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} demonstrated reliable detection performance for both methods. Across all datasets, we found a high sensitivity (triangle algorithm/adaptive thresholding algorithm: 0.93/0.97) and a high positive predictive value (0.94/0.89) against expert annotations in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}. The average delay of automatically detected inspiratory onset to the Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} reference was -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}79 ms/29 ms for the two algorithms. Our findings also indicate that automatic asynchrony index prediction is reliable. For both algorithms, we found the same deviation of 0.06 +/- 0.13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.06\pm 0.13$$\end{document} to the Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}-based reference.ConclusionsOur study demonstrates the feasibility of automating the quantification of patient-ventilator asynchrony in critically ill patients using noninvasive sEMG. This may facilitate more frequent diagnosis of asynchrony and support improving patient-ventilator interaction.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Patient-Ventilator Asynchrony: Adapt the Ventilator, Not the Patient!
    Wrigge, Hermann
    Reske, Andreas W.
    CRITICAL CARE MEDICINE, 2013, 41 (09) : 2240 - 2241
  • [22] Patient-Ventilator Asynchronies: Clinical Implications and Practical Solutions
    Mirabella, Lucia
    Cinnella, Gilda
    Costa, Roberta
    Cortegiani, Andrea
    Tullo, Livio
    Rauseo, Michela
    Conti, Giorgio
    Gregoretti, Cesare
    RESPIRATORY CARE, 2020, 65 (11) : 1751 - 1766
  • [23] Recognizing, quantifying and managing patient-ventilator asynchrony in invasive and noninvasive ventilation
    Garofalo, Eugenio
    Bruni, Andrea
    Pelaia, Corrado
    Liparota, Luisa
    Lombardo, Nicola
    Longhini, Federico
    Navalesi, Paolo
    EXPERT REVIEW OF RESPIRATORY MEDICINE, 2018, 12 (07) : 557 - 567
  • [24] Effect of ventilator mode on patient-ventilator synchrony and work of breathing in neonatal pigs
    Wood, Shayna M.
    Thurman, Tracy L.
    Holt, Shirley J.
    Bai, Shasha
    Heulitt, Mark J.
    Courtney, Sherry E.
    PEDIATRIC PULMONOLOGY, 2017, 52 (07) : 922 - 928
  • [25] Evolving approaches to assessing and monitoring patient-ventilator interactions
    Unroe, Mark
    MacIntyre, Neil
    CURRENT OPINION IN CRITICAL CARE, 2010, 16 (03) : 261 - 268
  • [26] Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony
    Colombo, Davide
    Cammarota, Gianmaria
    Alemani, Moreno
    Carenzo, Luca
    Barra, Federico Lorenzo
    Vaschetto, Rosanna
    Slutsky, Arthur S.
    Della Corte, Francesco
    Navalesi, Paolo
    CRITICAL CARE MEDICINE, 2011, 39 (11) : 2452 - 2457
  • [27] A Taxonomy for Patient-Ventilator Interactions and a Method to Read Ventilator Waveforms
    Mireles-Cabodevila, Eduardo
    Siuba, Matthew T.
    Chatburn, Robert L.
    RESPIRATORY CARE, 2022, 67 (01) : 129 - 148
  • [28] Patient-ventilator interaction: A general model for nonpassive mechanical ventilation
    Crooke, PS
    Head, JD
    Marini, JJ
    Hotchkiss, JR
    IMA JOURNAL OF MATHEMATICS APPLIED IN MEDICINE AND BIOLOGY, 1998, 15 (04): : 321 - 337
  • [29] The Patient-Ventilator Interaction Has a Third Player The Endotracheal Tube
    Vassilakopoulos, Theodoros
    CHEST, 2009, 136 (04) : 957 - 959
  • [30] Patient-Ventilator Interaction Testing Using the Electromechanical Lung Simulator xPULM™ during V/A-C and PSV Ventilation Mode
    Pasteka, Richard
    Santos da Costa, Joao Pedro
    Barros, Nelson
    Kolar, Radim
    Forjan, Mathias
    APPLIED SCIENCES-BASEL, 2021, 11 (09):