Electrical programmable multilevel nonvolatile photonic random-access memory

被引:42
作者
Meng, Jiawei [1 ]
Gui, Yaliang [1 ]
Nouri, Behrouz Movahhed [1 ]
Ma, Xiaoxuan [1 ]
Zhang, Yifei [4 ]
Popescu, Cosmin-Constantin [4 ]
Kang, Myungkoo [5 ]
Miscuglio, Mario [1 ]
Peserico, Nicola [1 ,2 ,3 ]
Richardson, Kathleen [5 ]
Hu, Juejun [4 ]
Dalir, Hamed [1 ,2 ,3 ]
Sorger, Volker J. [1 ,2 ,3 ]
机构
[1] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA
[2] Univ Florida, Florida Semicond Inst, Gainesville, FL 32603 USA
[3] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32603 USA
[4] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[5] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA
关键词
Optical radar - Phase change materials - Silicon on insulator technology;
D O I
10.1038/s41377-023-01213-3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonic Random-Access Memories (P-RAM) are an essential component for the on-chip non-von Neumann photonic computing by eliminating optoelectronic conversion losses in data links. Emerging Phase-Change Materials (PCMs) have been showed multilevel memory capability, but demonstrations still yield relatively high optical loss and require cumbersome WRITE-ERASE approaches increasing power consumption and system package challenges. Here we demonstrate a multistate electrically programmed low-loss nonvolatile photonic memory based on a broadband transparent phase-change material (Ge2Sb2Se5, GSSe) with ultralow absorption in the amorphous state. A zero-static-power and electrically programmed multi-bit P-RAM is demonstrated on a silicon-on-insulator platform, featuring efficient amplitude modulation up to 0.2 dB/& mu;m and an ultralow insertion loss of total 0.12 dB for a 4-bit memory showing a 100x improved signal to loss ratio compared to other phase-change-materials based photonic memories. We further optimize the positioning of dual microheaters validating performance tradeoffs. Experimentally we demonstrate a half-a-million cyclability test showcasing the robust approach of this material and device. Low-loss photonic retention-of-state adds a key feature for photonic functional and programmable circuits impacting many applications including neural networks, LiDAR, and sensors for example.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Optical RAM and integrated optical memories: a survey [J].
Alexoudi, Theoni ;
Kanellos, George Theodore ;
Pleros, Nikos .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[2]   Sub-wavelength GHz-fast broadband ITO Mach-Zehnder modulator on silicon photonics [J].
Amin, Rubab ;
Maiti, Rishi ;
Gui, Yaliang ;
Suer, Can ;
Miscuglio, Mario ;
Heidari, Elham ;
Chen, Ray T. ;
Dalir, Hamed ;
Sorger, Volker J. .
OPTICA, 2020, 7 (04) :333-335
[3]  
Bennouar K, 2021, J NEW TECHNOL MATER, V11, P58
[4]   Photonic In-Memory Computing Primitive for Spiking Neural Networks Using Phase-Change Materials [J].
Chakraborty, Indranil ;
Saha, Gobinda ;
Roy, Kaushik .
PHYSICAL REVIEW APPLIED, 2019, 11 (01)
[5]   Broadband Nonvolatile Electrically Controlled Programmable Units in Silicon Photonics [J].
Chen, Rui ;
Fang, Zhuoran ;
Froch, Johannes E. ;
Xu, Peipeng ;
Zheng, Jiajiu ;
Majumdar, Arka .
ACS PHOTONICS, 2022, 9 (06) :2142-2150
[6]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[7]   Ring resonator modulators in silicon for interchip photonic links [J].
Oracle Labs., Oracle, San Diego, CA 92121, United States .
IEEE J Sel Top Quantum Electron, 2013, 6
[8]   Current-driven phase-change optical gate switch using indium-tin-oxide heater [J].
Kato, Kentaro ;
Kuwahara, Masashi ;
Kawashima, Hitoshi ;
Tsuruoka, Tohru ;
Tsuda, Hiroyuki .
APPLIED PHYSICS EXPRESS, 2017, 10 (07)
[9]   An overview of phase-change memory device physics [J].
Le Gallo, Manuel ;
Sebastian, Abu .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (21)
[10]  
Li PN, 2016, NAT MATER, V15, P870, DOI [10.1038/nmat4649, 10.1038/NMAT4649]