Construction of S-scheme p-n heterojunction between protonated g-C3N4 and α-MnS nanosphere for photocatalytic H2O2 production and in situ degradation of oxytetracycline

被引:32
|
作者
Wang, Yu [1 ,3 ]
He, Yuxin [1 ]
Chi, Yujing [1 ,3 ]
Yin, Peiji [1 ,3 ]
Wei, Lishan [1 ,3 ]
Liu, Wenwen [1 ]
Wang, Xinyao [1 ]
Zhang, Han [2 ]
Song, Haiyan [1 ,3 ]
机构
[1] Northeast Forestry Univ, Coll Chem Chem Engn & Resource Utilizat, Dept Chem & Chem Engn, Harbin 150040, Peoples R China
[2] Harbin Inst Petr, Coll Chem Engn, Harbin 150027, Peoples R China
[3] Northeast Forestry Univ, Key Lab Forest Plant Ecol, Minist Educ, Harbin 150040, Peoples R China
来源
关键词
Hydrogen peroxide; MnS nanosphere; Protonatedg-C3N4; S-scheme; In situ oxidation; CARBON NITRIDE FRAMEWORKS; METAL-ORGANIC FRAMEWORKS; HYDROGEN-PEROXIDE; HYDROTHERMAL SYNTHESIS; POROUS G-C3N4; H-2; COBALT; AU; PERFORMANCE; CATALYSTS;
D O I
10.1016/j.jece.2023.109968
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Photocatalytic H2O2 production is a green and sustainable technology, which still exposes the issues of excessive dependence on organic electron donors and pure O2, and lacking effective use. It is necessary to develop more efficient and more economical photocatalysis system for H2O2 production. Here, we construct a S-scheme p-n heterojunction from the p-type MnS and the n-type protonated g-C3N4 (PCN) semiconductors for photocatalytic H2O2 production and achieve the in situ use of H2O2 for oxidative degradation of oxytetracycline (OTC). The PCN/MnS composite synthesized by a one-step method well maintains a nanosphere structure of & alpha;-MnS and load the PCN on the sphere surface to form a heterojunction with strong interaction. PCN/MnS exhibits the improved photogenerated charge separation and electron transfer efficiency. An optimal photocatalyst can produce 669.6 & mu;M of H2O2 for 6 h without using the electron donors and the pure O2 gas. The mechanism proposed the contribution of a S-scheme p-n heterojunction forms between PCN and MnS. The electrons in conduction band (CB) of MnS are responsible for the major single-electron reduction of & BULL;O2- radicals and the auxiliary two-electron reduction of O2 for H2O2 production, while the holes in valence band (VB) of PCN further promote the separation of photocarriers. The photogenerated H2O2 can be effectively used as an in-situ oxidant to achieve 82.2% degradation of OTC in water within 80 min. The & BULL;O2- radicals which originate from the in situ decomposition of H2O2 over PCN/MnS mainly contribute to the OTC oxidation.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water
    Li, Ke
    Liu, Chuang
    Li, Jingping
    Wang, Guohong
    Wang, Kai
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (11)
  • [22] S-scheme bimetallic sulfide ZnCo2S4/g-C3N4 heterojunction for photocatalytic H2 evolution
    Wang, Chenxuan
    Zhang, Wenjuan
    Fan, Jun
    Sun, Wenjuan
    Liu, Enzhou
    CERAMICS INTERNATIONAL, 2021, 47 (21) : 30194 - 30202
  • [23] Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation
    Xu, Quanlong
    Ma, Dekun
    Yang, Shuibin
    Tian, Zhengfang
    Cheng, Bei
    Fan, Jiajie
    APPLIED SURFACE SCIENCE, 2019, 495
  • [24] Photocatalytic splitting of H2O-to-H2O2 by BiOI/g-C3N4/CoP S-scheme heterojunctions
    Liou, Yu-Fang
    Wei, Ling-Wei
    Chen, Chiaying
    Liu, Shou-Heng
    Pu, Ying-Chih
    Wang, H. Paul
    New Journal of Chemistry, 2022, 47 (04) : 1825 - 1831
  • [25] Photocatalytic splitting of H2O-to-H2O2 by BiOI/g-C3N4/CoP S-scheme heterojunctions
    Liou, Yu-Fang
    Wei, Ling-Wei
    Chen, Chiaying
    Liu, Shou-Heng
    Pu, Ying-Chih
    Wang, H. Paul
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (04) : 1825 - 1831
  • [26] S-scheme Ti0.7Sn0.3O2/g-C3N4 heterojunction composite for enhanced photocatalytic pollutants degradation
    Guo, Bingrong
    Liu, Bin
    Wang, Chaoli
    Wang, Yuhua
    Yin, Shu
    Javed, Muhammad Sufyan
    Han, Weihua
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (02):
  • [27] ZnAl2O4/sulfur-doped g-C3N4 S-scheme heterojunction for efficient photocatalytic degradation of malachite green
    Jin, Qiyu
    Wang, Shi
    Lei, Chunsheng
    Liu, Shihao
    Feng, Siyang
    Ma, Tianji
    Lang, Zhaocheng
    OPTICAL MATERIALS, 2023, 136
  • [28] S-Scheme Heterojunction Photocatalyst for Photocatalytic H2O2 Production: A Review
    Fang, Weili
    Wang, Liang
    CATALYSTS, 2023, 13 (10)
  • [29] Construction of a In2O3/ultrathin g-C3N4 S-scheme heterojunction for sensitive photoelectrochemical aptasensing of diazinon
    Yan, Pengcheng
    Huang, Jing
    Wu, Guanyu
    Zhang, Yu
    Mo, Zhao
    Xu, Keqiang
    Ling, Min
    Dong, Sihua
    Xu, Li
    Li, Henan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 679 : 653 - 661
  • [30] Construction of S-scheme heterojunction of OVs-BiOIO3/N-CQDs/g-C3N4 for degradation of tetracycline
    Jing, Hongxia
    Chen, Bingge
    Wang, Xu
    Liu, Jun
    Wu, Mingliang
    Zhang, Xiaoming
    Pei, Wangjun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 176