PSO-Based Ensemble Meta-Learning Approach for Cloud Virtual Machine Resource Usage Prediction

被引:7
|
作者
Leka, Habte Lejebo [1 ]
Fengli, Zhang [1 ]
Kenea, Ayantu Tesfaye [2 ]
Hundera, Negalign Wake [3 ]
Tohye, Tewodros Gizaw [1 ]
Tegene, Abebe Tamrat [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610056, Peoples R China
[2] Adama Sci & Technol Univ, Sch Elect Engn & Comp, Dept Comp Sci & Engn, POB 1888, Adama, Ethiopia
[3] Zhejiang Normal Univ, Sch Comp Sci & Technol, Jinhua 321004, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 03期
基金
中国国家自然科学基金;
关键词
BiLSTM; cloud system; ensemble learning; PSO; LSTM; GRU; WORKLOAD PREDICTION; NEURAL-NETWORK; MODEL; ENERGY; EFFICIENT; CONSOLIDATION; MANAGEMENT;
D O I
10.3390/sym15030613
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To meet the increasing demand for its services, a cloud system should make optimum use of its available resources. Additionally, the high and low oscillations in cloud workload are another significant symmetrical issue that necessitates consideration. A suggested particle swarm optimization (PSO)-based ensemble meta-learning workload forecasting approach uses base models and the PSO-optimized weights of their network inputs. The proposed model employs a blended ensemble learning strategy to merge three recurrent neural networks (RNNs), followed by a dense neural network layer. The CPU utilization of GWA-T-12 and PlanetLab traces is used to assess the method's efficacy. In terms of RMSE, the approach is compared to the LSTM, GRU, and BiLSTM sub-models.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Resource optimization using predictive virtual machine consolidation approach in cloud environment
    Garg, Vaneet
    Jindal, Balkrishan
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2023, 17 (02): : 471 - 484
  • [32] A multi-output prediction model for physical machine resource usage in cloud data centers
    Zhang, Yongde
    Liu, Fagui
    Wang, Bin
    Lin, Weiwei
    Zhong, Guoxiang
    Xu, Minxian
    Li, Keqin
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 130 : 292 - 306
  • [33] Prediction of energy content of biomass based on hybrid machine learning ensemble algorithm
    Dodo, Usman Alhaji
    Ashigwuike, Evans Chinemezu
    Emechebea, Jonas Nwachukwu
    Abbac, Sani Isah
    ENERGY NEXUS, 2022, 8
  • [34] A Feature Engineering and Ensemble Learning Based Approach for Repeated Buyers Prediction
    Zhang, Mingyang
    Lu, Jiayue
    Ma, Ning
    Cheng, T. C. Edwin
    Hua, Guowei
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2022, 17 (06)
  • [35] A prediction-based model for virtual machine live migration monitoring in a cloud datacenter
    El Motaki, Saloua
    Yahyaouy, Ali
    Gualous, Hamid
    COMPUTING, 2021, 103 (11) : 2711 - 2735
  • [36] Resource Quality Prediction Based on Machine Learning Algorithms
    Wang, Yu
    Yang, Dingyu
    Shi, Yunfan
    Wang, Yizhen
    Chen, Wanli
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 1541 - 1545
  • [37] A Machine Learning (ML)-Based Approach to Improve Tropical Cyclone Intensity Prediction of NCMRWF Ensemble Prediction System
    Kumar, Sushant
    Dube, Anumeha
    Ashrit, Raghavendra
    Mitra, Ashis K.
    PURE AND APPLIED GEOPHYSICS, 2023, 180 (01) : 261 - 275
  • [38] Enhancing Machine Learning based QoE Prediction by Ensemble Models
    Casas, Pedro
    Seufert, Michael
    Wehner, Nikolas
    Schwind, Anika
    Wamser, Florian
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2018, : 1642 - 1647
  • [39] A comparative ensemble approach to bedload prediction using metaheuristic machine learning
    Mir, Ajaz Ahmad
    Patel, Mahesh
    Albalawi, Fahad
    Bajaj, Mohit
    Tuka, Milkias Berhanu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] An Ensemble Machine Learning and Data Mining Approach to Enhance Stroke Prediction
    Wijaya, Richard
    Saeed, Faisal
    Samimi, Parnia
    Albarrak, Abdullah M.
    Qasem, Sultan Noman
    BIOENGINEERING-BASEL, 2024, 11 (07):