Interactions between Soil Moisture and Water Availability over the Inner Mongolia Section of the Yellow River Basin, China

被引:1
|
作者
Zhang, Kaiwen [1 ,2 ]
Zhang, Qiang [3 ]
Wang, Gang [1 ,2 ]
Li, Tiantian [1 ,2 ]
Song, Jinbo [1 ,2 ]
Wu, Wenhuan [1 ,2 ]
Singh, Vijay P. [4 ,5 ]
机构
[1] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Adv Interdisciplinary Inst Environm & Ecol, Zhuhai 519087, Peoples R China
[4] Texas A&M Univ, Dept Biol & Agr Engn, Zachry Dept Civil & Environm Engn, College Stn, TX 77840 USA
[5] UAE Univ, Natl Water & Energy Ctr, POB 15551, Al Ain, U Arab Emirates
关键词
soil moisture; surface water availability; land-atmosphere interaction; water balance; SURFACE-TEMPERATURE; HYDROLOGICAL CYCLE; PRECIPITATION; EVAPOTRANSPIRATION; BALANCE; MODEL; FEEDBACKS; RESPONSES; RAINFALL; CLIMATE;
D O I
10.3390/atmos14030443
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The ecological conservation and high-quality development of the Yellow River Basin (YRB) has been declared as a major national strategy of China. Surface water availability (precipitation minus evapotranspiration, PME) poses challenges to the sustainability of ecosystems of the YRB. Noteworthy is that the Mongolian section of the YRB (IMYRB) is a critical ecological barrier in Northern China. Soil moisture (SM) changes are highly sensitive to PME and important for regional ecological security. However, SM vs. PME interactions and relevant mechanisms within the IMYRB are poorly understood. We found significant decreases in SM and PME over the east IMYRB (r = 0.7, p < 0.05). During the wet (July, August, and September) and dry (April, May, and June) seasons, as well as the whole year, decreased SM drives increased PME through land-atmosphere interactions over more than 90% of the IMYRB. Reduction in SM decreased evapotranspiration over more than 80% of the IMYRB, increased surface temperature across more than 79% of the IMYRB, boosted atmospheric vertical ascent over more than 75% of the IMYRB, and enhanced moisture convergence and PME. This study highlights the land-atmosphere interactions over the IMYRB, implicating basin-scale impacts of climatic changes on water resources.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Assessing the feedback relationship between vegetation and soil moisture over the Loess Plateau, China
    Wei, Xiaoting
    Huang, Qiang
    Huang, Shengzhi
    Leng, Guoyong
    Qu, Yanping
    Deng, Mingjiang
    Han, Zhiming
    Zhao, Jing
    Liu, Dong
    Bai, Qingjun
    ECOLOGICAL INDICATORS, 2022, 134
  • [42] Distinct impacts of spring soil moisture over the Indo-China Peninsula on summer precipitation in the Yangtze River basin under different SST backgrounds
    Zhu, Siguang
    Qi, Yajing
    Chen, Haishan
    Gao, Chujie
    Zhou, Botao
    Zhang, Jie
    Wei, Jiangfeng
    CLIMATE DYNAMICS, 2021, 56 (5-6) : 1895 - 1918
  • [43] Coupling interactions and spatial equilibrium analysis of water-energy-food in the Yellow River Basin, China
    Wang, Yirui
    Song, Jinxi
    Sun, Haotian
    SUSTAINABLE CITIES AND SOCIETY, 2023, 88
  • [44] Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, northern China
    Du, Heqiang
    Xue, Xian
    Wang, Tao
    Deng, Xiaohong
    AEOLIAN RESEARCH, 2015, 17 : 193 - 204
  • [45] Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of SMAP-Derived Soil Water Deficit Index in Xiang River Basin, China
    Zhu, Qian
    Luo, Yulin
    Xu, Yue-Ping
    Tian, Ye
    Yang, Tiantian
    REMOTE SENSING, 2019, 11 (03)
  • [46] The relationship between spring soil moisture and summer hot extremes over North China
    Wu Lingyun
    Zhang Jingyong
    ADVANCES IN ATMOSPHERIC SCIENCES, 2015, 32 (12) : 1660 - 1668
  • [47] How Will Climate Change Affect the Water Availability in the Heihe River Basin, Northwest China?
    Zhang, Aijing
    Liu, Wenbin
    Yin, Zhenliang
    Fu, Guobin
    Zheng, Chunmiao
    JOURNAL OF HYDROMETEOROLOGY, 2016, 17 (05) : 1517 - 1542
  • [48] Soil moisture and salinity dynamics of drip irrigation in saline-alkali soil of Yellow River basin
    Wang, Yaqi
    Gao, Ming
    Chen, Heting
    Fu, Xiaoke
    Wang, Lei
    Wang, Rui
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2023, 11
  • [49] Characteristics of deep drainage and soil water in the mobile sandy lands of Inner Mongolia, northern China
    Liu, XinPing
    He, YuHui
    Zhao, XueYong
    Zhang, TongHui
    Zhang, LaMei
    Ma, YunHua
    Yao, ShuXia
    Wang, ShaoKun
    Wei, ShuiLian
    JOURNAL OF ARID LAND, 2015, 7 (02) : 238 - 250
  • [50] Comparison of evapotranspiration variations between the Yellow River and Pearl River basin, China
    Qiang Zhang
    Chong-Yu Xu
    Yongqin David Chen
    Liliang Ren
    Stochastic Environmental Research and Risk Assessment, 2011, 25 : 139 - 150