Sexually dimorphic hepatic mitochondrial adaptations to exercise: a mini-review

被引:1
作者
Kugler, Benjamin A. [1 ,2 ,3 ]
Thyfault, John P. [1 ,2 ,3 ,4 ,5 ,6 ]
McCoin, Colin S. [1 ,2 ,3 ,4 ,6 ]
机构
[1] Univ Kansas, Dept Cell Biol & Physiol, Med Ctr, Kansas City, KS 66103 USA
[2] Univ Kansas, KU Diabet Inst, Med Ctr, Kansas City, KS 66160 USA
[3] Univ Kansas, Kansas Ctr Metab & Obes Res, Med Ctr, Kansas City, KS 66211 USA
[4] Ctr Childrens Hlth Lifestyles & Nutr, Kansas City, MO 64108 USA
[5] Univ Kansas, Dept Internal Med, Div Endocrinol & Metab, Med Ctr, Kansas City, KS USA
[6] Kansas City Vet Affairs Med Ctr, Kansas City, MO 64128 USA
关键词
exercise; liver; mitochondria; mitophagy; respiration; FATTY-ACID OXIDATION; RAT-LIVER; METABOLISM; PGC-1-ALPHA; CAPACITY; MUSCLE; PROTEIN; DIET;
D O I
10.1152/japplphysiol.00711.2022
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Exercise is a physiological stress that disrupts tissue and cellular homeostasis while enhancing systemic metabolic energy demand mainly through the increased workload of skeletal muscle. Although the extensive focus has been on skeletal mus-cle adaptations to exercise, the liver senses these disruptions in metabolic energy homeostasis and responds to provide the required substrates to sustain increased demand. Hepatic metabolic flexibility is an energetically costly process that requires continuous mitochondrial production of the cellular currency ATP. To do so, the liver must maintain a healthy func-tioning mitochondrial pool, attained through well-regulated and dynamic processes. Intriguingly, some of these responses are sex-dependent. This mini-review examines the hepatic mitochondrial adaptations to exercise with a focus on sexual dimorphism.
引用
收藏
页码:685 / 691
页数:7
相关论文
共 54 条
  • [11] PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
    Finck, BN
    Kelly, DP
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (03) : 615 - 622
  • [12] Fibroblast growth factor 21 increases hepatic oxidative capacity but not physical activity or energy expenditure in hepatic peroxisome proliferator-activated receptor coactivator-1-deficient mice
    Fletcher, Justin A.
    Linden, Melissa A.
    Sheldon, Ryan D.
    Meers, Grace M.
    Morris, E. Matthew
    Butterfield, Anthony
    Perfield, James W.
    Rector, R. Scott
    Thyfault, John P.
    [J]. EXPERIMENTAL PHYSIOLOGY, 2018, 103 (03) : 408 - 418
  • [13] Impact of Various Exercise Modalities on Hepatic Mitochondrial Function
    Fletcher, Justin A.
    Meers, Grace M.
    Linden, Melissa A.
    Kearney, Monica L.
    Morris, E. Matthew
    Thyfault, John P.
    Rector, R. Scott
    [J]. MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2014, 46 (06) : 1089 - 1097
  • [14] Barriers in translating preclinical rodent exercise metabolism findings to human health
    Fuller, Kelly N. Z.
    Thyfault, John P.
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 2021, 130 (01) : 182 - 192
  • [15] Low-intensity exercise induces acute shifts in liver and skeletal muscle substrate metabolism but not chronic adaptations in tissue oxidative capacity
    Fuller, Scott E.
    Huang, Tai-Yu
    Simon, Jacob
    Batdorf, Heidi M.
    Essajee, Nabil M.
    Scott, Matthew C.
    Waskom, Callie M.
    Brown, John M.
    Burke, Susan J.
    Collier, J. Jason
    Noland, Robert C.
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 2019, 127 (01) : 143 - 156
  • [16] Role of PGC-1α in exercise and fasting-induced adaptations in mouse liver
    Haase, Tobias Norreso
    Ringholm, Stine
    Leick, Lotte
    Bienso, Rasmus Sjorup
    Kiilerich, Kristian
    Johansen, Sune
    Nielsen, Maja Munk
    Wojtaszewski, Jorgen F. P.
    Hidalgo, Juan
    Pedersen, Per Amstrup
    Pilegaard, Henriette
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2011, 301 (05) : R1501 - R1509
  • [17] Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
    He, Congcong
    Bassik, Michael C.
    Moresi, Viviana
    Sun, Kai
    Wei, Yongjie
    Zou, Zhongju
    An, Zhenyi
    Loh, Joy
    Fisher, Jill
    Sun, Qihua
    Korsmeyer, Stanley
    Packer, Milton
    May, Herman I.
    Hill, Joseph A.
    Virgin, Herbert W.
    Gilpin, Christopher
    Xiao, Guanghua
    Bassel-Duby, Rhonda
    Scherer, Philipp E.
    Levine, Beth
    [J]. NATURE, 2012, 481 (7382) : 511 - U126
  • [18] Exercise prevents fatty liver by modifying the compensatory response of mitochondrial metabolism to excess substrate availability
    Hoene, Miriam
    Kappler, Lisa
    Kollipara, Laxmikanth
    Hu, Chunxiu
    Irmler, Martin
    Bleher, Daniel
    Hoffmann, Christoph
    Beckers, Johannes
    de Angelis, Martin Hrabe
    Haring, Hans-Ulrich
    Birkenfeld, Andreas L.
    Peter, Andreas
    Sickmann, Albert
    Xu, Guowang
    Lehmann, Rainer
    Weigert, Cora
    [J]. MOLECULAR METABOLISM, 2021, 54
  • [19] Metabolomics investigation of exercise-modulated changes in metabolism in rat liver after exhaustive and endurance exercises
    Huang, Chi-Chang
    Lin, Wan-Teng
    Hsu, Feng-Lin
    Tsai, Pi-Wen
    Hou, Chia-Chung
    [J]. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2010, 108 (03) : 557 - 566
  • [20] Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice
    Hughey, Curtis C.
    James, Freyja D.
    Bracy, Deanna P.
    Donahue, E. Patrick
    Young, Jamey D.
    Viollet, Benoit
    Foretz, Marc
    Wasserman, David H.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (49) : 20125 - 20140