K-rings of wonderful varieties and matroids

被引:4
作者
Larson, Matt [1 ]
Li, Shiyue [2 ]
Payne, Sam [3 ]
Proudfoot, Nicholas [4 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Brown Univ, Dept Math, Providence, RI 02906 USA
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[4] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
K-rings; Matroids; Wonderful compactifications; Deligne-Mumford-Knudsen moduli; spaces of curves; MODULI SPACES; CURVES;
D O I
10.1016/j.aim.2024.109554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the K -ring of the wonderful variety of a hyperplane arrangement and give a combinatorial presentation that depends only on the underlying matroid. We use this combinatorial presentation to define the K -ring of an arbitrary loopless matroid. We construct an exceptional isomorphism, with integer coefficients, to the Chow ring of the matroid that satisfies a Hirzebruch-Riemann-Roch-type formula, generalizing a recent construction of Berget, Eur, Spink, and Tseng for the permutohedral variety (the wonderful variety of a Boolean arrangement). As an application, we give combinatorial formulas for Euler characteristics of arbitrary line bundles on wonderful varieties. We give analogous constructions and results for augmented wonderful varieties, and for Deligne-Mumford-Knudsen moduli spaces of stable rational curves with marked points. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:43
相关论文
共 37 条
[1]   Hodge theory for combinatorial geometries [J].
Adiprasito, Karim ;
Huh, June ;
Katz, Eric .
ANNALS OF MATHEMATICS, 2018, 188 (02) :381-452
[2]  
Anderson D, 2015, DOC MATH, V20, P357
[3]   The Bergman complex of a matroid and phylogenetic trees [J].
Ardila, F ;
Klivans, CJ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (01) :38-49
[4]   Valuations and the Hopf Monoid of Generalized Permutahedra [J].
Ardila, Federico ;
Sanchez, Mario .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (05) :4149-4224
[5]  
Backman S, 2023, J. Eur. Math. Soc.
[6]   Tautological classes of matroids [J].
Berget, Andrew ;
Eur, Christopher ;
Spink, Hunter ;
Tseng, Dennis .
INVENTIONES MATHEMATICAE, 2023, 233 (02) :951-1039
[7]  
BERTHELOT P., 1971, LECT NOTES MATH, V225
[8]   A semi-small decomposition of the Chow ring of a matroid [J].
Braden, Tom ;
Huh, June ;
Matherne, Jacob P. ;
Proudfoot, Nicholas ;
Wang, Botong .
ADVANCES IN MATHEMATICS, 2022, 409
[9]  
Braden T, 2022, Arxiv, DOI arXiv:2010.06088
[10]  
Castravet AM, 2023, Arxiv, DOI arXiv:2002.02889