A Simple Blass Matrix Design Strategy for Multibeam Arbitrary Linear Antenna Arrays

被引:8
作者
Buttazzoni, Giulia [1 ,2 ]
Marongiu, Elena [3 ]
Fanti, Alessandro [2 ,3 ]
Melis, Andrea [3 ]
Curreli, Nicola [4 ,5 ,6 ]
Pavone, Santi Concetto [7 ]
Sorbello, Gino [7 ]
Schettino, Giovanni Maria [8 ]
Vatta, Francesca [1 ,2 ]
Babich, Fulvio [1 ,2 ]
Comisso, Massimiliano [1 ,2 ]
机构
[1] Univ Trieste, Dept Engn & Architecture DIA, I-34127 Trieste, Italy
[2] Natl Interuniv Consortium Telecommun CNIT, I-50139 Florence, Italy
[3] Univ Cagliari, Dept Elect & Elect Engn DIEE, I-09123 Cagliari, Italy
[4] Italian Inst Technol IIT, Funct Nanosyst, I-16163 Genoa, Italy
[5] Swiss Fed Labs Mat Sci & Technol Empa, Transport Nanoscale Interfaces Lab, CH-8600 Dubendorf, Switzerland
[6] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[7] Univ Catania, Dept Elect Elect & Comp Engn DIEEI, I-95125 Catania, Italy
[8] Univ Trieste, Dept Engn & Architecture DIA, I-34127 Trieste, Italy
关键词
Analog beamforming; Blass matrix; feeding network; multibeam antennas; NETWORKS; TERRESTRIAL; ANALOG; 5G;
D O I
10.1109/TAP.2023.3310148
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multibeam antenna arrays are currently recognized as one of the enabling technologies for the next-generation communication standards. One of the key components of these systems is the beamforming network (BFN) that implements the array element excitations. This article addresses this issue by presenting a novel strategy to realize an analog feeding network, which allows an arbitrary linear array (LA) to radiate multiple arbitrary beams. In particular, an iterative procedure is conceived to design a Blass matrix using an identical directional coupler for all nodes, resulting in a very simple structure suitable for large-scale production. Two applications with arbitrary directions are illustrated as proofs-of-concept for the developed architecture: a dual-beam configuration with a null involving an aperiodic LA, and a four-beam configuration involving a periodic LA. For this second application, the effectiveness of the proposed solution is further verified by full-wave simulations and experimental measurements carried out on a fabricated prototype.
引用
收藏
页码:8514 / 8524
页数:11
相关论文
共 35 条
[1]   Ultra-Wideband Compact Millimeter-Wave Printed Ridge Gap Waveguide Directional Couplers for 5G Applications [J].
Ali, Mohamed Mamdouh M. ;
Haraz, Osama M. ;
Afifi, Islam ;
Sebak, Abdel-Razik ;
Denidni, Tayeb A. .
IEEE ACCESS, 2022, 10 :90706-90714
[2]  
Allen J., 1961, IRE Trans. Antennas Propag., VAP-9, P350
[3]  
Blass J., 1960, IRE INT CONVENTION R, V8, P48, DOI DOI 10.1109/IRECON.1960.1150892
[4]  
Braun F., 1909, Electrical Oscillations and Wireless Telegraphy
[5]   A Beamforming Network for 5G/6G Multibeam Antennas Using the PCB Technology [J].
Buttazzoni, G. ;
Schettino, G. M. ;
Fanti, A. ;
Marongiu, E. ;
Curreli, N. ;
Babich, F. ;
Comisso, M. .
2023 17TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2023,
[6]   A novel design method for Blass matrix beam-forming networks [J].
Casini, Federico ;
Gatti, Roberto Vincenti ;
Marcaccioli, Luca ;
Sorrentino, Roberto .
2007 EUROPEAN MICROWAVE CONFERENCE, VOLS 1-4, 2007, :1511-1514
[7]  
Chiu JC, 2006, IEEE MICROW WIREL CO, V16, P369, DOI 10.1109/LMWC.2006.875592
[8]  
Cummings W. C., 1978, Tech. Rep. A056904
[9]  
Dassault Systemes Simulia, CST Computer Simulation Technology, Microwave Studio Suite
[10]  
Delaney W.P., 1962, IRE Transactions on Military Electronics, VMIL-6, P179, DOI [DOI 10.1109/IRET-MIL.1962.5008426, 10.1109/IRET-MIL.1962.5008426]