Self-organization, physicochemical, and biological properties of diluted aqueous systems of malic acid

被引:1
作者
Ryzhkina, I. S. [1 ]
Murtazina, L. I. [1 ]
Kostina, L. A. [1 ]
Meleshenko, K. A. [1 ]
Dokuchaeva, I. S. [1 ,2 ]
Kuznetsova, T. V. [3 ]
Petrov, A. M. [3 ]
机构
[1] Russian Acad Sci, Arbuzov Inst Organ & Phys Chem, FRC Kazan Sci Ctr, ul Akad Arbuzova 8, Kazan 420088, Russia
[2] Kazan Natl Res Technol Univ, 68 Ul Karla Marksa, Kazan 420015, Russia
[3] Tatarstan Acad Sci, Inst Problems Ecol & Mineral Wealth Use, 28 Ul Daurskaya, Kazan 420087, Russia
关键词
self-organization; low calculated concentrations; malic acid; dispersed system; fluorescence; green algae Chlorella vulgaris; seeds of wheat Triticum vulgare; LOW-CONCENTRATIONS INTERCONNECTION; LOW-CONCENTRATION RANGE; ORGANIC-ACIDS; SUCCINIC ACID; N-(PHOSPHONOMETHYL)GLYCINE; GROWTH;
D O I
10.1007/s11172-023-4012-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A complex of physicochemical methods determined the relationship between the non-monotonic concentration dependencies of the size, zeta-potential of the dispersed phase, surface tension, fluorescence intensity (lambda(ex )= 230 nm, lambda(em) = 340 nm) of diluted aqueous systems of malic acid (MA) and their effect on the population of green algae Chlorella vulgaris and root growth of wheat Triticum vulgare. It was shown that the non-toxic, selective effect of MA systems on plant organisms occurs in the range of calculated concentrations, at which the greatest changes in the parameters of the dispersed phase, the surface tension, and the fluorescence intensity of the systems are observed.
引用
收藏
页码:2162 / 2170
页数:9
相关论文
共 50 条
[31]   Disperse systems based on chloracetophos in the low concentration range: self-organization, physicochemical properties and influence on representatives of higher plants and hydrobionts [J].
I. S. Ryzhkina ;
S. Yu. Sergeeva ;
L. I. Murtazina ;
M. D. Shevelev ;
L. R. Akhmetzyanova ;
T. V. Kuznetsova ;
E. R. Zaynulgabidinov ;
I. V. Knyazev ;
A. M. Petrov ;
A. I. Konovalov .
Russian Chemical Bulletin, 2018, 67 :792-799
[32]   The uniqueness of biological self-organization: challenging the Darwinian paradigm [J].
Edelmann, J. B. ;
Denton, M. J. .
BIOLOGY & PHILOSOPHY, 2007, 22 (04) :579-601
[33]   Fungal colony patterning as an example of biological self-organization [J].
Bystrova, Elena ;
Bogomolova, Evgenia ;
Panina, Ludmila ;
Bulianitsa, Anton ;
Kurochkin, Vladimir .
UNIFYING THEMES IN COMPLEX SYSTEMS IV, 2008, :139-+
[34]   The uniqueness of biological self-organization: challenging the Darwinian paradigm [J].
J. B. Edelmann ;
M. J. Denton .
Biology & Philosophy, 2007, 22 :579-601
[35]   The self-organization of combinatoriality and phonotactics in vocalization systems [J].
Oudeyer, PY .
CONNECTION SCIENCE, 2005, 17 (3-4) :325-341
[36]   Adaptivity and Self-Organization in Organic Computing Systems [J].
Schmeck, Hartmut ;
Mueller-Schloer, Christian ;
Cakar, Emre ;
Mnif, Moez ;
Richter, Urban .
ACM TRANSACTIONS ON AUTONOMOUS AND ADAPTIVE SYSTEMS, 2010, 5 (03)
[37]   Self-organization and evolution in dynamic friction systems [J].
Zakovorotny, Vilor L. ;
Gvindjiliya, Valery E. .
JOURNAL OF VIBROENGINEERING, 2021, 23 (06) :1418-1432
[38]   Self-organization in computer simulated selective systems [J].
Atamas, SP .
BIOSYSTEMS, 1996, 39 (02) :143-151
[39]   Molecular self-organization and multiple equilibrium systems [J].
Ataullakhanov F.I. ;
Melnik K.S. ;
Butylin A.A. .
Biophysics, 2013, 58 (1) :120-127
[40]   Self-organization and the emergence of complexity in ecological systems [J].
Levin, SA .
BIOSCIENCE, 2005, 55 (12) :1075-1079