Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants

被引:11
|
作者
Yadav, Rakesh Kumar [1 ]
Tripathi, Manoj Kumar [1 ,2 ]
Tiwari, Sushma [1 ,2 ]
Tripathi, Niraj [3 ]
Asati, Ruchi [1 ]
Chauhan, Shailja [1 ]
Tiwari, Prakash Narayan [2 ]
Payasi, Devendra K. [4 ]
机构
[1] Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Coll Agr, Dept Genet & Plant Breeding, Gwalior 474002, India
[2] Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Coll Agr, Dept Plant Mol Biol & Biotechnol, Gwalior 474002, India
[3] Jawaharlal Nehru Krishi Vishwa Vidyalaya, Directorate Res Serv, Jabalpur 482004, India
[4] Reg Agr Res Stn, Sagar 470001, India
来源
LIFE-BASEL | 2023年 / 13卷 / 07期
关键词
abiotic and biotic stress; CRISPR; mega nucleases; TALEN; ZFN; MALE-STERILE MAIZE; TARGETED MUTAGENESIS; HOMOLOGOUS RECOMBINATION; HERITABLE MUTATIONS; CRISPR/CAS9; SYSTEM; DROUGHT TOLERANCE; GENE DISRUPTION; COLD TOLERANCE; SALT TOLERANCE; TRAIT STACKING;
D O I
10.3390/life13071456
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genome editing aims to revolutionise plant breeding and could assist in safeguarding the global food supply. The inclusion of a 12-40 bp recognition site makes mega nucleases the first tools utilized for genome editing and first generation gene-editing tools. Zinc finger nucleases (ZFNs) are the second gene-editing technique, and because they create double-stranded breaks, they are more dependable and effective. ZFNs were the original designed nuclease-based approach of genome editing. The Cys2-His2 zinc finger domain's discovery made this technique possible. Clustered regularly interspaced short palindromic repeats (CRISPR) are utilized to improve genetics, boost biomass production, increase nutrient usage efficiency, and develop disease resistance. Plant genomes can be effectively modified using genome-editing technologies to enhance characteristics without introducing foreign DNA into the genome. Next-generation plant breeding will soon be defined by these exact breeding methods. There is abroad promise that genome-edited crops will be essential in the years to come for improving the sustainability and climate-change resilience of food systems. This method also has great potential for enhancing crops' resistance to various abiotic stressors. In this review paper, we summarize the most recent findings about the mechanism of abiotic stress response in crop plants and the use of the CRISPR/Cas mediated gene-editing systems to improve tolerance to stresses including drought, salinity, cold, heat, and heavy metals.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Genome Editing Tools in Plants
    Mohanta, Tapan Kumar
    Bashir, Tufail
    Hashem, Abeer
    Abd Allah, Elsayed Fathi
    Bae, Hanhong
    GENES, 2017, 8 (12)
  • [42] Improving abiotic stress tolerance of forage grasses - prospects of using genome editing
    Sustek-Sanchez, Ferenz
    Rognli, Odd Arne
    Rostoks, Nils
    Somera, Merike
    Jaskune, Kristina
    Kovi, Mallikarjuna Rao
    Statkeviciute, Grazina
    Sarmiento, Cecilia
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [43] CRISPR-Cas genome-editing tool in plant abiotic stress-tolerance
    Biswas, Dew
    Saha, Suchismita Chatterjee
    Dey, Abhijit
    PLANT GENE, 2021, 26
  • [44] Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants
    Osakabe, Yuriko
    Watanabe, Takahito
    Sugano, Shigeo S.
    Ueta, Risa
    Ishihara, Ryosuke
    Shinozaki, Kazuo
    Osakabe, Keishi
    SCIENTIFIC REPORTS, 2016, 6
  • [45] Genome editing applications in plants: high-throughput CRISPR/Cas editing for crop improvement
    Thomson, Michael
    JOURNAL OF ANIMAL SCIENCE, 2019, 97 : 56 - 56
  • [46] Tweaking genome-editing approaches for virus interference in crop plants
    Mushtaq, Muntazir
    Mukhtar, Shazia
    Sakina, Aafreen
    Dar, Aejaz Ahmad
    Bhat, Rohini
    Deshmukh, Rupesh
    Molla, Kutubuddin
    Kundoo, Ajaz Ahmad
    Dar, Mohd Saleem
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 147 : 242 - 250
  • [47] Strategies to improve genome editing efficiency in crop plants
    Aravind, B.
    Molla, Kutubuddin
    Mangrauthia, Satendra K.
    Mohannath, Gireesha
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 32 (04) : 661 - 672
  • [48] Genome editing for crop improvement: A perspective from India
    Bhattacharya, Anjanabha
    Parkhi, Vilas
    Char, Bharat
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2021, 57 (04) : 565 - 573
  • [49] Genome Editing with Engineered Nucleases in Plants
    Osakabe, Yuriko
    Osakabe, Keishi
    PLANT AND CELL PHYSIOLOGY, 2015, 56 (03) : 389 - 400
  • [50] Genome editing reagent delivery in plants
    Ghogare, Rishikesh
    Ludwig, Yvonne
    Bueno, Gela Myan
    Slamet-Loedin, Inez H.
    Dhingra, Amit
    TRANSGENIC RESEARCH, 2021, 30 (04) : 321 - 335