Assessing the source of error in the Thomas-Fermi-von Weizsacker density functional

被引:4
作者
Thapa, Bishal [1 ,2 ]
Jing, Xin [3 ,4 ]
Pask, John E. [5 ]
Suryanarayana, Phanish [3 ]
Mazin, Igor I. [1 ,2 ]
机构
[1] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
[2] George Mason Univ, Quantum Sci & Engn Ctr, Fairfax, VA 22030 USA
[3] Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
[5] Lawrence Livermore Natl Lab, Phys Div, Livermore, CA 94550 USA
关键词
FINITE-DIFFERENCE FORMULATION; PARALLEL IMPLEMENTATION; SIMULATION PACKAGE; SPARC ACCURATE; ENERGY; ENERGETICS;
D O I
10.1063/5.0146167
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the source of error in the Thomas-Fermi-von Weizsacker (TFW) density functional relative to Kohn-Sham density functional theory (DFT). In particular, through numerical studies on a range of materials, for a variety of crystal structures subject to strain and atomic displacements, we find that while the ground state electron density in TFW orbital-free DFT is close to the Kohn-Sham density, the corresponding energy deviates significantly from the Kohn-Sham value. We show that these differences are a consequence of the poor representation of the linear response within the TFW approximation for the electronic kinetic energy, confirming conjectures in the literature. In so doing, we find that the energy computed from a non-self-consistent Kohn-Sham calculation using the TFW electronic ground state density is in very good agreement with that obtained from the fully self-consistent Kohn-Sham solution.
引用
收藏
页数:6
相关论文
共 51 条
[1]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[2]   Orbital-free density functional theory calculations of the properties of Al, Mg and Al-Mg crystalline phases [J].
Carling, KM ;
Carter, EA .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2003, 11 (03) :339-348
[3]   NONLOCAL KINETIC-ENERGY FUNCTIONAL FOR NONHOMOGENEOUS ELECTRON-SYSTEMS [J].
CHACON, E ;
ALVARELLOS, JE ;
TARAZONA, P .
PHYSICAL REVIEW B, 1985, 32 (12) :7868-7877
[4]   Performance of Semilocal Kinetic Energy Functionals for Orbital-Free Density Functional Theory [J].
Constantin, Lucian A. ;
Fabiano, Eduardo ;
Della Sala, Fabio .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (05) :3044-3055
[5]   Semilocal Pauli-Gaussian Kinetic Functionals for Orbital-Free Density Functional Theory Calculations of Solids [J].
Constantin, Lucian A. ;
Fabiano, Eduardo ;
Della Sala, Fabio .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (15) :4385-4390
[6]   Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients [J].
Constantin, Lucian A. ;
Fabiano, Eduardo ;
Della Sala, Fabio .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (09) :4228-4239
[7]   EXTREMAL PROPERTIES OF THE HARRIS-FOULKES FUNCTIONAL AND AN IMPROVED SCREENING CALCULATION FOR THE ELECTRON-GAS [J].
FARID, B ;
HEINE, V ;
ENGEL, GE ;
ROBERTSON, IJ .
PHYSICAL REVIEW B, 1993, 48 (16) :11602-11621
[8]   A statistical Method for Determining some Properties of the Atoms and its Application to the Theory of the periodic Table of Elements [J].
Fermi, E. .
ZEITSCHRIFT FUR PHYSIK, 1928, 48 (1-2) :73-79
[9]   Analysis of the kinetic energy functional in the generalized gradient approximation [J].
Francisco, Hector I. ;
Carmona-Espindola, Javier ;
Gazquez, Jose L. .
JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (08)
[10]   SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Extended systems [J].
Ghosh, Swarnava ;
Suryanarayana, Phanish .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 216 :109-125