An Optimized Clustering Approach using Tree Seed Algorithm for the Brain MRI Images Segmentation

被引:2
作者
Ghaouti, Ghazi Boumediene [1 ]
Benyahia, Samia [2 ]
Meftah, Boudjelal [3 ]
机构
[1] Mustapha Stambouli Univ, Fac Exact Sci, Comp Sci Dept, Mascara, Algeria
[2] Higher Sch Management & Digital Econ, Tipasa, Algeria
[3] Mustapha Stambouli Univ, LRSBG Lab, Mascara, Algeria
来源
INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE | 2023年 / 26卷 / 72期
关键词
Edge detection; Segmentation; Brain MRI image; Tree seed algorithm; Metrics;
D O I
10.4114/intartif.vol26iss72pp44-59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering algorithms are widely used for segmenting medical images. However, these techniques can be challenging to perform, especially when working with magnetic resonance images (MRI) of the brain. The complexity of the brain tissue's anatomical structure, the inhomogeneity of the pixel intensity in these images, and the effects of partial volume and noise can make clustering difficult, leading the algorithm to fall into local minima. To address this issue, it is recommended to improve clustering algorithms by using optimization techniques to achieve better results. In this study, we propose a developed clustering algorithm and optimize it using a tree seed algorithm (TSA) for segmenting brain MRI images. The algorithms are tested on real brain image datasets, and the experimental results show that our proposed and optimized methods yield satisfactory results according to the Davies-Bouldin Index (DBI), compared to the fuzzy c-mean (FCM) algorithm.
引用
收藏
页码:44 / 59
页数:16
相关论文
共 24 条
[1]   A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned [J].
Abd-Ellah, Mahmoud Khaled ;
Awad, Ali Ismail ;
Khalaf, Ashraf A. M. ;
Hamed, Hesham F. A. .
MAGNETIC RESONANCE IMAGING, 2019, 61 :300-318
[2]  
Al Mamun A, 2021, International Journal of Electrical and Computer Engineering (IJECE), V11, P4982, DOI [10.11591/ijece.v11i6.pp4982-4990, 10.11591/ijece.v11i6.pp4982-4990]
[3]  
Al Mamun A, 2022, International Journal of Electrical and Computer Engineering (IJECE), V12, P4206, DOI [10.11591/ijece.v12i4.pp4206-4216, 10.11591/ijece.v12i4.pp4206-4216]
[4]   Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction [J].
Benaichouche, A. N. ;
Oulhadj, H. ;
Siarry, P. .
DIGITAL SIGNAL PROCESSING, 2013, 23 (05) :1390-1400
[5]   Brain Image Segmentation Based on Firefly Algorithm Combined with K-means Clustering [J].
Capor Hrosik, Romana ;
Tuba, Eva ;
Dolicanin, Edin ;
Jovanovic, Raka ;
Tuba, Milan .
STUDIES IN INFORMATICS AND CONTROL, 2019, 28 (02) :167-176
[6]  
Chandra S., 2020, J MED IMAG HEALTH IN, V10, P2297
[7]  
Chen G. Y., 2022, J MED IMAG HEALTH IN, V12, P122
[8]  
Daraei S. R., 2021, COMPUT METH PROG BIO, V203, P1
[9]  
Das S., 2021, MULTIMED TOOLS APPL, V80, P6305
[10]   Chaotic firefly algorithm-based fuzzy C-means algorithm for segmentation of brain tissues in magnetic resonance images [J].
Ghosh, Partha ;
Mali, Kalyani ;
Das, Sitansu Kumar .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 54 :63-79