Local Dirac's condition on the existence of 2-factor

被引:0
作者
Chen, Xiaodong [1 ]
Chen, Guantao [2 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Local Dirac's condition; 2-factor; Barrier; THEOREMS;
D O I
10.1016/j.disc.2023.113436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a vertex u in a graph and a given positive integer k, let M-k(u) denote the set of vertices whose distance from u is at most k. A graph satisfies the local Dirac's condition if the degree of each vertex u in it is at least |M-2(u)|/2 . Asratian et al. disproved that a connected graph G on at least three vertices is Hamiltonian if G satisfies the local Dirac's condition. In this paper, we prove that if a connected graph G on at least three vertices satisfies the local Dirac's condition, then G contains a 2-factor. Our result is best possible. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 14 条
  • [1] The Existence of a 2-Factor in K1,n-Free Graphs with Large Connectivity and Large Edge-Connectivity
    Aldred, R. E. L.
    Egawa, Yoshimi
    Fujisawa, Jun
    Ota, Katsuhiro
    Saito, Akira
    [J]. JOURNAL OF GRAPH THEORY, 2011, 68 (01) : 77 - 89
  • [2] Asratian A.S., 1985, DOKL AKAD NAUK SSSR+, V81, P103
  • [3] A localization method in Hamiltonian graph theory
    Asratian, Armen S.
    Granholm, Jonas B.
    Khachatryan, Nikolay K.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 148 : 209 - 238
  • [4] Asratian AS, 2007, AUSTRALAS J COMB, V38, P77
  • [5] Bondy J. A., 1976, Graph theory with applications
  • [6] THE EXISTENCE OF A 2-FACTOR IN A GRAPH SATISFYING THE LOCAL CHVATAL-ERDOS CONDITION
    Chen, Guantao
    Saito, Akira
    Shan, Songling
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1788 - 1799
  • [7] Chvatal V., 1972, DISCRETE MATH, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
  • [8] Dirac G.A., 1952, P LOND MATH SOC, V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [9] SOME LOCALIZATION THEOREMS ON HAMILTONIAN CIRCUITS
    HASRATIAN, AS
    KHACHATRIAN, NK
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 49 (02) : 287 - 294
  • [10] A sufficient condition for Hamiltonicity in locally finite graphs
    Heuer, Karl
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 45 : 97 - 114