Variational approach for the Kirchhoff problem involving the p-Laplace operator and the ?-Hilfer derivative

被引:13
作者
Alsaedi, Ramzi [1 ,2 ]
Ghanmi, Abdeljabbar [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
关键词
generalized Riemann-Liouville operators; mountain pass theorem; p-Laplacian operator; variational methods; BOUNDARY-VALUE-PROBLEMS; EXISTENCE; RESPECT;
D O I
10.1002/mma.9053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work aims to develop the variational framework for some Kirchhoff problems involving both the p-Laplace operator and the Psi-Hilfer derivative. Precisely, we use the mountain pass theorem to prove the existence of nontrivial solutions. Moreover, the multiplicity of solutions is proved by the use of the Z(2)-symmetry mountain pass theorem. Our main results generalize the paper of Torres (J Fract Calculus Appli. 2014;5(1):1-10) and the work of Sousa et al. (Comp Appl Math. 2019;38:4).
引用
收藏
页码:9286 / 9297
页数:12
相关论文
共 29 条
[1]  
Agarwal RP, 2009, GEORGIAN MATH J, V16, P401
[2]  
Agrawal O., 2004, FRACTIONAL DERIVATIV
[3]   FURTHER PROPERTIES OF OSLER'S GENERALIZED FRACTIONAL INTEGRALS AND DERIVATIVES WITH RESPECT TO ANOTHER FUNCTION [J].
Almeida, Ricardo .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (08) :2459-2493
[4]   A Caputo fractional derivative of a function with respect to another function [J].
Almeida, Ricardo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :460-481
[5]  
Ben Ali K, 2016, ELECTRON J DIFFER EQ
[6]  
Cesar T. L., 2016, Commun. Pure Appl. Anal., V15, P535
[7]  
Cesar TL., 2016, ADV NONLINEAR ANAL, V5, P133
[8]  
Cesar TL., 2019, ANAL MATH PHYS, V9, P1303
[9]   A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction [J].
Chen, Wen ;
Pang, Guofei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 309 :350-367
[10]   A fractional-order model for MINMOD Millennium [J].
Cho, Yongjin ;
Kim, Imbunm ;
Sheen, Dongwoo .
MATHEMATICAL BIOSCIENCES, 2015, 262 :36-45