Explicit solutions from Darboux transformation for the two-component nonlocal Hirota and Maxwell-Bloch system

被引:4
作者
Yan, Shu [1 ]
Li, Chuanzhong [1 ,2 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-component nonlocal Hirota and Maxwell-Bloch system; symmetry; Darboux transformation; explicit solutions; SOLITONS; FIBERS;
D O I
10.1142/S0219887823500627
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the two-component Hirota and Maxwell-Bloch (H-MB) system, which describes the propagation of ultra-short pulses in erbium-doped nonlinear optical fibers, we derive two kinds of two-component nonlocal H-MB (NH-MB) systems by choosing suitable symmetries, namely PT-symmetric two-component NH-MB system and reverse space-time two-component NH-MB system. Then the explicit solutions of these two systems are obtained by the Darboux transformation.
引用
收藏
页数:23
相关论文
共 28 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]   Darboux transformations and solutions of nonlocal Hirota and Maxwell-Bloch equations [J].
An, Ling ;
Li, Chuanzhong ;
Zhang, Lixiang .
STUDIES IN APPLIED MATHEMATICS, 2021, 147 (01) :60-83
[4]  
Bluman G.W., 2010, Application of Symmetry Methods to Partial Differential Equations
[5]   Integrable nonlocal Hirota equations [J].
Cen, Julia ;
Correa, Francisco ;
Fring, Andreas .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
[6]   General soliton solution to a nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions [J].
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2018, 31 (12) :5385-5409
[7]   Integrable multidimensional versions of the nonlocal nonlinear Schrodinger equation [J].
Fokas, A. S. .
NONLINEARITY, 2016, 29 (02) :319-324
[8]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .2. NORMAL DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (04) :171-172
[9]   Determinant representation of Darboux transformation for the AKNS system [J].
He Jingsong ;
Zhang Ling ;
Cheng Yi ;
Li Yishen .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (12) :1867-1878
[10]  
He JS, 2002, COMMUN THEOR PHYS, V38, P493