Geometry of Tangent Poisson-Lie Groups

被引:0
作者
Al-Dayel, Ibrahim [1 ]
Aloui, Foued [1 ]
Deshmukh, Sharief [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
[2] King Saud Univ, Dept Math, Riyadh 11495, Saudi Arabia
关键词
Poisson geometry; Riemannian geometry; Lie group; Lie algebra; COMPATIBILITY; BUNDLE;
D O I
10.3390/math11010240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a Poisson-Lie group equipped with a left invariant contravariant pseudo-Riemannian metric. There are many ways to lift the Poisson structure on G to the tangent bundle TG of G. In this paper, we induce a left invariant contravariant pseudo-Riemannian metric on the tangent bundle TG, and we express in different cases the contravariant Levi-Civita connection and curvature of TG in terms of the contravariant Levi-Civita connection and the curvature of G. We prove that the space of differential forms omega*(G) on G is a differential graded Poisson algebra if, and only if, omega*(TG) is a differential graded Poisson algebra. Moreover, we show that G is a pseudo-Riemannian Poisson-Lie group if, and only if, the Sanchez de Alvarez tangent Poisson-Lie group TG is also a pseudo-Riemannian Poisson-Lie group. Finally, some examples of pseudo-Riemannian tangent Poisson-Lie groups are given.
引用
收藏
页数:18
相关论文
共 50 条
[41]   Lie groups and subsemigroups with surjective exponential function [J].
Hofmann, KH ;
Ruppert, WAF .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 130 (618) :1-+
[42]   Integrable magnetic geodesic flows on Lie groups [J].
Magazev, A. A. ;
Shirokov, I. V. ;
Yurevich, Yu. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 156 (02) :1127-1141
[43]   BI-HAMILTONIAN STRUCTURES ON THE TANGENT BUNDLE TO A POISSON MANIFOLD [J].
Dobrogowska, Alina ;
Jakimowicz, Grzegorz ;
Wojciechowicz, Karolina .
JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2019, 52 :47-66
[44]   Karl Heinrich Hofmann and the Structure of Compact Groups and Pro-Lie Groups [J].
Morris, Sidney A. .
JOURNAL OF LIE THEORY, 2023, 33 (01) :5-28
[45]   GROUPS AND LIE RINGS WITH FROBENIUS GROUPS OF AUTOMORPHISMS [J].
Makarenko, N. Yu. .
ISCHIA GROUP THEORY 2010, 2012, :223-254
[46]   Geometry of projective plane and Poisson structure [J].
Tomihisa, Toshio .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (05) :673-684
[47]   Pro-Lie Groups: A Survey with Open Problems [J].
Hofmann, Karl H. ;
Morris, Sidney A. .
AXIOMS, 2015, 4 (03) :294-312
[48]   Symplectic, Orthogonal and Linear Lie Groups in Clifford Algebra [J].
D. S. Shirokov .
Advances in Applied Clifford Algebras, 2015, 25 :707-718
[49]   LIE GROUPS AS KAHLER MANIFOLDS WITH KILLING NORDEN METRIC [J].
Teofilova, Marta .
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (06) :733-742
[50]   Symmetry Reduction in Symplectic and Poisson Geometry [J].
Juan-Pablo Ortega ;
Judor S. Ratiu .
Letters in Mathematical Physics, 2004, 69 :11-61