Geometry of Tangent Poisson-Lie Groups

被引:0
作者
Al-Dayel, Ibrahim [1 ]
Aloui, Foued [1 ]
Deshmukh, Sharief [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
[2] King Saud Univ, Dept Math, Riyadh 11495, Saudi Arabia
关键词
Poisson geometry; Riemannian geometry; Lie group; Lie algebra; COMPATIBILITY; BUNDLE;
D O I
10.3390/math11010240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a Poisson-Lie group equipped with a left invariant contravariant pseudo-Riemannian metric. There are many ways to lift the Poisson structure on G to the tangent bundle TG of G. In this paper, we induce a left invariant contravariant pseudo-Riemannian metric on the tangent bundle TG, and we express in different cases the contravariant Levi-Civita connection and curvature of TG in terms of the contravariant Levi-Civita connection and the curvature of G. We prove that the space of differential forms omega*(G) on G is a differential graded Poisson algebra if, and only if, omega*(TG) is a differential graded Poisson algebra. Moreover, we show that G is a pseudo-Riemannian Poisson-Lie group if, and only if, the Sanchez de Alvarez tangent Poisson-Lie group TG is also a pseudo-Riemannian Poisson-Lie group. Finally, some examples of pseudo-Riemannian tangent Poisson-Lie groups are given.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] On an Isospectral Lie–Poisson System and Its Lie Algebra
    Anthony M. Bloch
    Arieh Iserles
    Foundations of Computational Mathematics, 2006, 6 : 121 - 144
  • [22] Casimir preserving stochastic Lie-Poisson integrators
    Luesink, Erwin
    Ephrati, Sagy
    Cifani, Paolo
    Geurts, Bernard
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [23] Lie Theory and the Structure of pro-Lie groups and pro-Lie algebras
    Hofmann, Karl H.
    Morris, Sidney A.
    TOPOLOGY PROCEEDINGS, VOL 28, NO 2, 2004, 2004, 28 (02): : 541 - 567
  • [24] Locally compact groups, residual Lie groups, and varieties generated by Lie groups
    Hofmann, KH
    Morris, SA
    Stroppel, M
    TOPOLOGY AND ITS APPLICATIONS, 1996, 71 (01) : 63 - 91
  • [25] Factorization Problems on Rational Loop Groups, and the Poisson Geometry of Yang-Baxter Maps
    Luen-Chau Li
    Mathematical Physics, Analysis and Geometry, 2022, 25
  • [26] Factorization Problems on Rational Loop Groups, and the Poisson Geometry of Yang-Baxter Maps
    Li, Luen-Chau
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (01)
  • [27] On an isospectral Lie-Poisson system and its lie algebra
    Bloch, AM
    Iserles, A
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (01) : 121 - 144
  • [29] On the Contact Geometry and the Poisson Geometry of the Ideal Gas
    Isidro, J. M.
    Fernandez de Cordoba, P.
    ENTROPY, 2018, 20 (04):
  • [30] A Lie-Poisson bracket formulation of plasticity and the computations based on the Lie-group SO(n)
    Liu, Chein-Shan
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (13) : 2033 - 2049