Data augmentation based estimation for the censored quantile regression neural network model

被引:6
作者
Hao, Ruiting [1 ]
Weng, Chengwei [1 ]
Liu, Xinyu [1 ]
Yang, Xiaorong [1 ]
机构
[1] Zhejiang Gongshang Univ, Collaborat Innovat Ctr Stat Data Engn Technol & Ap, Sch Stat & Math, Hangzhou 310018, Peoples R China
关键词
Censored data; Quantile regression neural network; Data augmentation; Imputation; DENSITY;
D O I
10.1016/j.eswa.2022.119097
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantile regression neural network (QRNN) model has received wide attentions in recent years to explore complex nonlinear problems. However, when the responses yi are subject to censoring (left censoring, right censoring and interval censoring might occur), predictions by using observed data, will lead to unbelievable results. Thus, new method for QRNN model with censored data is appealing. In this paper, we propose an iterative approach based on the data augmentation method for censored QRNN model estimation. Firstly the censored data are imputed through a data augmentation process, then the QRNN model is updated with the imputed data, finally we make predictions through the updated QRNN model. It is worth mentioning that simulation studies and real data illustrations show the superiority of our proposed method. Using the results based on full uncensored data as the benchmark, we compare the estimation efficiency of the proposed method with the existing ones. Our method outperforms others in terms of quantile loss and prediction interval width, yielding prediction results that are much closer to the benchmark. The proposed estimation method for censored QRNN model can be easily adapted to deal with different censoring types including left censoring, right censoring and interval censoring, remedying the defect that existing method is only suitable for right censoring type.
引用
收藏
页数:15
相关论文
共 42 条
[1]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[2]   Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review [J].
Alamoodi, A. H. ;
Zaidan, B. B. ;
Zaidan, A. A. ;
Albahri, O. S. ;
Mohammed, K. I. ;
Malik, R. Q. ;
Almahdi, E. M. ;
Chyad, M. A. ;
Tareq, Z. ;
Albahri, A. S. ;
Hameed, Hamsa ;
Alaa, Musaab .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 167
[3]   Based on the multi-assessment model: Towards a new context of combining the artificial neural network and structural equation modelling: A review [J].
Albahri, A. S. ;
Alnoor, Alhamzah ;
Zaidan, A. . A. . ;
Albahri, O. S. ;
Hameed, Hamsa ;
Zaidan, B. B. ;
Peh, S. S. ;
Zain, A. B. ;
Siraj, S. B. ;
Alamoodi, A. H. ;
Yass, A. . A. . .
CHAOS SOLITONS & FRACTALS, 2021, 153
[4]   Hybrid artificial neural network and structural equation modelling techniques: a survey [J].
Albahri, A. S. ;
Alnoor, Alhamzah ;
Zaidan, A. A. ;
Albahri, O. S. ;
Hameed, Hamsa ;
Zaidan, B. B. ;
Peh, S. S. ;
Zain, A. B. ;
Siraj, S. B. ;
Masnan, A. H. B. ;
Yass, A. A. .
COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (02) :1781-1801
[5]   A pattern recognition model for static gestures in malaysian sign language based on machine learning techniques [J].
Alrubayi, Ali H. ;
Ahmed, M. A. ;
Zaidan, A. A. ;
Albahri, A. S. ;
Zaidan, B. B. ;
Albahri, O. S. ;
Alamoodi, A. H. ;
Alazab, Mamoun .
COMPUTERS & ELECTRICAL ENGINEERING, 2021, 95
[6]   An alternative estimator for the censored quantile regression model [J].
Buchinsky, M ;
Hahn, JY .
ECONOMETRICA, 1998, 66 (03) :653-671
[7]   Quantile regression neural networks: Implementation in R and application to precipitation downscaling [J].
Cannon, Alex J. .
COMPUTERS & GEOSCIENCES, 2011, 37 (09) :1277-1284
[8]  
CARLIN BP, 1995, J ROY STAT SOC B MET, V57, P473
[9]   Extended Bayesian information criteria for model selection with large model spaces [J].
Chen, Jiahua ;
Chen, Zehua .
BIOMETRIKA, 2008, 95 (03) :759-771
[10]   Three-step censored quantile regression and extramarital affairs [J].
Chernozhukov, V ;
Hong, H .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (459) :872-882